Блютуз машинка купить дешево – низкие цены, бесплатная доставка в интернет-магазине Joom

Блютуз машинка купить дешево - низкие цены, бесплатная доставка в интернет-магазине Joom Машинки
Содержание
  1. ↑ что нам потребуется для сборки машинки?
  2. Основная активность, сопряжение arduino и android
  3. «шелл» предлагает эксклюзивную коллекцию ferrari
  4. ↑ будем строить машинку с ду!
  5. ↑ как я разбираю пакет
  6. ↑ передача пакета данных
  7. ↑ приём пакета данных
  8. ↑ приложение под android для машинки
  9. ↑ программа микроконтроллера
  10. Arduino – машинка на ардуино с управлением на телефоне
  11. Выбираем компоненты
  12. Драйвер двигателей
  13. Конструкция, шасси и двигатели робота на ардуино
  14. Машина-робот на базе arduino с управление через bluetooth
  15. Метод loop() и дополнительные функции
  16. Настройки приложения
  17. Переменные
  18. Питание робота
  19. Подключаем bluetooth к машинке
  20. Подключаем двигатели и плату
  21. Пример платформы робота-машины на ардуино
  22. Принцип работы
  23. Робот на ардуино своими руками
  24. Сборка
  25. Соединяем управляющую плату с моторами
  26. Схема подключения
  27. Схема электропитания робота автомобиля

↑ что нам потребуется для сборки машинки?

Поворотные колеса отсутствуют, значит, управление поворотом будет как у гусеничного ТС. То есть, для прямого движения, вперед/назад, правая и левая сторона приводов вращаются с одинаковой скоростью. А для осуществления поворота, скорость вращения на одной из сторон должна быть меньше или больше.

2. Bluetooth–модуль «HC-06» .

Для дистанционного управления машинкой используем канал Bluetooth. Модуль «HC-06» — это мост Bluetooth, последовательный интерфейс, позволяющий передавать данные в обе стороны. На входе — TTL-сигналы последовательного интерфейса «RxD» и «TxD» для подключения к микроконтроллеру (целевой плате).

В качестве пульта дистанционного управления будет служить сотовый телефон с Android. Напишем свою программу!

3. Драйвер двигателей TB6612FNG двухканальный.

Драйвер двухканальный, на левую и правую пару колес. Драйвер имеет логические входы для изменения полярности выхода (направления вращения) и вход ШИМ, можно будет сделать управление скоростью вращения.

4. Плата управления MOD-IO (Olimex)

Выбрана эта плата т.к. валялась в ящике стола и полностью подходит для нашей цели. Есть дискретные входы/выходы, выведены сигналы МК «RxD» и «TxD», куда будет подключен «HC-06“.

Забегая вперёд скажу, что продукт Олимекс MOD-IO — это жёсткий перебор. Прекрасно можно будет применить и обычную

, о чём в продолжении истории!

Итого: шасси плата управления Bluetooth-модуль программа управления под Android.

Основная активность, сопряжение arduino и android

Наследуем класс от AppCompatActivity и объявляем переменные:

public class MainActivity extends AppCompatActivity {
        private BluetoothAdapter bluetoothAdapter;
        private ListView listView;
        private ArrayList<String> pairedDeviceArrayList;
        private ArrayAdapter<String> pairedDeviceAdapter;
        public static BluetoothSocket clientSocket;
        private Button buttonStartControl;
}

Метод onCreate() опишу построчно:

@Override
protected void onCreate(Bundle savedInstanceState) {
     super.onCreate(savedInstanceState); //обязательная строчка
     //прикрепляем ранее созданную разметку
     setContentView(R.layout.activity_main); 
     //цепляем кнопку из разметки          
     Button buttonStartFind = (Button) findViewById(R.id.button_start_find); 
     //цепляем layout, в котором будут отображаться найденные устройства
     listView = (ListView) findViewById(R.id.list_device); 
      
     //устанавливаем действие на клик                                                                           
     buttonStartFind.setOnClickListener(new View.OnClickListener() { 
                                                                                                    
         @Override
         public void onClick(View v) {
             //если разрешения получены (функция ниже)
             if(permissionGranted()) { 
               //адаптер для управления блютузом
                bluetoothAdapter = BluetoothAdapter.getDefaultAdapter(); 
                if(bluetoothEnabled()) { //если блютуз включен (функция ниже)
                    findArduino(); //начать поиск устройства (функция ниже)
                  }
              }
         }
    });

     //цепляем кнопку для перехода к управлению
     buttonStartControl = (Button) findViewById(R.id.button_start_control); 
     buttonStartControl.setOnClickListener(new View.OnClickListener() {
         @Override
         public void onClick(View v) {
                //объект для запуска новых активностей
                Intent intent = new Intent(); 
                //связываем с активностью управления
                intent.setClass(getApplicationContext(), ActivityControl.class);
                //закрыть эту активность, открыть экран управления
                startActivity(intent); 
         }
     });

 }

Нижеприведенные функции проверяют, получено ли разрешение на использование блютуза (без разрешение пользователя мы не сможем передавать данные) и включен ли блютуз:

«шелл» предлагает эксклюзивную коллекцию ferrari

Все новости

18:00, 22 Марта

Сервис доставки Broniboy привлёк инвестиции 500 млн рублей

17:30, 22 Марта

«Лента» тестирует весы с технологией видеораспознавания

17:00, 22 Марта

«Пятёрочка» увеличила продажи готовой еды на 60% в 2021 году

16:34, 22 Марта

Wildberries начал прямые поставки от предпринимателей Удмуртии

16:18, 22 Марта

Компания СДЭК внедряет продуктовый подход

15:56, 22 Марта

«Пятёрочка» переводит «Выручай-карту» на платформу российской разработки

15:35, 22 Марта

Средние траты россиян на здоровье в 2021 году составили 1453 рубля

14:55, 22 Марта

«ВкусВилл» открыл магазины в Адлере и Красной Поляне

14:00, 22 Марта

«Кухня на районе» может войти в «Яндекс» или будет закрыта

13:30, 22 Марта

«Яндекс.Маркет» снизил комиссию на продажу одежды и обуви до 1 рубля


↑ будем строить машинку с ду!

Практический и технический интерес вызывают игрушки с радиоуправлением. Однако, ребёнку в возрасте 4-6 лет не будут дарить игрушки со «взрослым» пропорциональным управлением. Скорее всего, игрушка будет сломана, а деньги выкинуты на ветер.

В итоге, обычно дарят что-то недорогое. Из всего этого – «недорогого» — машинки или шибко быстрые или тормозные; танки хилые; и прочие очевидные и скрытые недостатки. И уж конечно никакого пропорционального управления.

В один прекрасный день у одной из машинок перестало вращаться правое колесо. Разобрал, проверил моторчик – исправный.На плате управления три микросхемы – Китай голимый, вменяемой документации найти не смог. Один чип – приёмник радиосигнала с логическими выходами и два мостовых драйвера двигателей. Один из драйверов вышел из строя. Сваять сходу мостовой драйвер двигателя из дискретных компонентов у меня не получилось.

В местном магазине радиодеталей ничего подходящего не было. Вот я и подался в дальние страны за чудо-микросхемами. Собрал пожитки, набил карманы сухарями, налил чашечку кофе, запустил браузер и пошел… на Алиэкспресс.Нашел подходящий по параметрам драйвер двигателя, заказал сразу два.

Не откладывая в долгий ящик идею о своей машинке, я снова подался на Алиэкспресс для выбора основы — шасси будущей машинки. Шасси бывают разные, для наземного транспорта: гусеничные, колесные, с двумя, тремя, четырьмя колесами и т.п.

↑ как я разбираю пакет

Теперь самое интересное, как я разбираю пакет. В пакете могут передаваться данные размерностью больше байта, знаковые данные, данные с плавающей точкой.

Объясню на примере пакета для управления шасси. Кроме стартового и стопового байтов, в своём пакете мне необходимо передавать одну команду, и два значения ШИМ, для левой и правой стороны приводов. Для команды мне достаточно одного байта, а для каждого значения ШИМ, я передаю
int16
 — 16 бит, знаковый тип. То есть, я не передаю флаг (байт/признак) направления. Для смены направления, я передаю положительное или отрицательное значение ШИМ.

Приёмный пакет у меня организован в виде структуры.

struct RxPacket
{
	uint8_t	StartByte;
	uint8_t      Command;
	int16_t      Left_PWM;
	int16_t      Right_PWM;
	uint8_t	StopByte;
} RxPacket;

Вызывая функцию RB_read_buffer ((uint8_t*)&RxPacket), в качестве аргумента передаем указатель на структуру приёмного пакета. То есть, при принятом пакете, будет все разложено по своим полочкам в структуре RxPacket. Дальше остается прочитать эти данные из структуры например так:

↑ передача пакета данных

Хоть в моей программе передача пока не используется, тем не менее, возможность передачи реализована. Передавать данные проще. Точно также, как и для приемного пакета, создадим структуру:

struct TxPacket
{
	uint8_t StartByte;
	uint8_t Rc5System;
	uint8_t Rc5Command;
	uint8_t StopByte;
} TxPacket;

Где, есть стартовый и стоповый байт и информационная часть. Мы уже инициализировали приемник USART.Для инициирования передачи пакета — вызываем функцию

void send_packet()
{
	// Запись стартового байта в регистр UDR
	UDR = START_BYTE;
}

В данном примере, в этой функции, я записываю только стартовый байт в регистр UDR. Вроде бы немного, но в этой же функции можно реализовать подготовку пакета или еще что-то полезное. И это, на мой взгляд более логично. Логично в плане самодокументирования кода. То есть, если я в коде, просто запишу значение в регистр UDR это может быть воспринято, как передача всего одного байта, а вызывая самоговорящую функцию
send_packet ()
 — я говорю о том, что я отправляю пакет данных.

Далее, когда передатчик USART отправит весь байт из регистра UDR — будет вызван обработчик прерывания по передаче.

ISR(USART_TXC_vect)
{
	unsigned char *Pointer = (unsigned char *)&(TxPacket);

	static unsigned char TxIndex = 1;

	if ( TxIndex < sizeof(TxPacket) )
	{
		UDR = *(Pointer   TxIndex);
		TxIndex  ;
	}
	else TxIndex = 1;
}

В обработчике я объявляю переменную указателя и присваиваю её адрес структуры TxPacket. Далее объявляется статическая переменная — индекс передаваемого байта, которой при объявлении присвоено значение 1. Начинаем с одного потому, что первый байт из структуры мы уже отправили.

Условие

if ( TxIndex < sizeof(TxPacket) )

проверяет, что индекс меньше чем размер пакета. Если условие верно, то записываем байт в регистр UDR:

UDR = *(Pointer   TxIndex);

инкрементируем TxIndex. Когда USART передаст очередной байт, то мы снова попадём в обработчик, но будет передан уже следующий байт из структуры и так будут переданы все байты структуры. Когда TxIndex будет больше чем размер структуры — условие будет не верно и мы попадем в 

else TxIndex = 1;

Где будет проинициализирован TxIndex, но в регистр UDR уже ничего не записывается, соответственно обработчик больше не будет вызван до следующего инициирования передачи пакета. Таким образом, процесс передачи полностью автоматический, и даже, если мы изменим структуру пакета, то обработчик переписывать не придётся.

В рамках описания программы МК осталось рассказать про реализацию управления драйверами. Драйвер управляется тремя сигналами: A1 (B1), A2 (B2) и PWMA (PWMB). A1 и A2 предназначены для включения/выключения драйвера и для изменения полярности выхода. На вход PWMA подается ШИМ сигнал с МК — можно управлять скоростью вращения. Для ШИМ сигнала я задействовал два аппаратных ШИМа таймера 1.

#define _WGM13 0
#define _WGM12 1
#define _WGM11 0
#define _WGM10 1

// Timer 1 init
TCCR1A = ( 1 << COM1A1 ) | ( 0 << COM1A0 ) | ( 1 << COM1B1 ) |
 ( 0 << COM1B0 ) | ( _WGM11 << WGM11 ) | ( _WGM10 << WGM10 );
TCCR1B = ( 0 << CS12 ) | ( 0 << CS11 ) | ( 1 << CS10 ) |
			 ( _WGM13 << WGM13 ) | ( _WGM12 << WGM12 );

	TCNT1 =0x0000;
	OCR1A = 0;
	OCR1B = 0;

Во-первых, это пошло от программы под Андроид. Дело в том что в Java нет без знаковых типов и я уже наступал на эти грабли. И для передачи числа от 0 до 255 мне пришлось бы как то извернуться. Я решил пойти более простым путем — отсылаю знаковое 16-бит число. При этом, 16 бит знакового типа это от -32786 до 32768, нам хватит.

Смотрите про коптеры:  Комплект умного дома - Протокол связи Bluetooth

Во-вторых, так на мой взгляд более прозрачно — скорость вращения и направления описывается всего одной переменной.

И в-третьих, как не крути, для наших целей меньше чем в три байта не уложиться. Пожертвуем еще одним байтом, зато всё становится понятно, положительное значение ШИМ — прямое вращение, отрицательное значение — обратное вращение.

Для управления приводами я написал функцию drive (int leftPWM, int rightPWM);.

void drive(int leftPWM, int rightPWM)
{
	// Движение ВПЕРЁД левое колесо
	if ( leftPWM > 0 ){
		ClearBit( A2_PORT, A2_PIN );
		SetBit( A1_PORT, A1_PIN );
	}
	// Движение НАЗАД левое колесо
	if ( leftPWM < 0 ){
		ClearBit( A1_PORT, A1_PIN );
		SetBit( A2_PORT, A2_PIN );
	}
	// Движение ВПЕРЁД правое колесо
	if ( rightPWM > 0 ){
		ClearBit( B2_PORT, B2_PIN );
		SetBit( B1_PORT, B1_PIN );
	}
	// Движение НАЗАД правое колесо
	if ( rightPWM < 0 ){
		ClearBit( B1_PORT, B1_PIN );
		SetBit( B2_PORT, B2_PIN );
	}
	// Остановка
	if ( leftPWM == 0 ){
		ClearBit( A1_PORT, A1_PIN );
		ClearBit( A2_PORT, A2_PIN );
	}
	// Остановка
	if ( rightPWM == 0 ){
		ClearBit( B1_PORT, B1_PIN );
		ClearBit( B2_PORT, B2_PIN );
	}

	set_PWM( (uint8_t)(abs(leftPWM)), (uint8_t)(abs(rightPWM)) );
}

В соответствии со значением ШИМ, осуществляется управление сигналами A1 (B1), A2 (B2) и устанавливается значение ШИМ вызовом функции
set_PWM (leftPWM, rightPWM)

Уфф, выдохся… Подытожим: приняли пакет, разобрали, передали значение ШИМ в функцию drive.

↑ приём пакета данных

В функции обработчика прерывания приема байта по USART, нам необходимо всего лишь положить принятый байт в кольцевой буфер. Разбор пакета будем делать потом.

ISR(USART_RXC_vect)
{
	uint8_t Data = UDR;
	RB_push_char( Data );	// Складываем принятый байт в кольцевой буфер
}

Да, я пока пренебрег всякими проверками фрейма.

Теперь нам остается время от времени проверять наш буфер. Для этого я инициировал таймер, в котором я устанавливаю флаг разрешающий проверку кольцевого буфера

ISR(TIMER0_OVF_vect)
{
	TCNT0 = 0x64;
	ReadRingBuffer = 1;
}

В основном цикле добавляем условие для проверки флага.

if ( ReadRingBuffer )
{
if ( RB_read_buffer((uint8_t*)&RxPacket) == 1 ) Чтение буфера
			{
                                          // Разбираем пакет, делаем что-нибудь
			}
			ReadRingBuffer = 0;
		}

Функция RB_read_buffer проверяет кольцевой буфер, если размер пакета, стартовый и стоповые байты находятся на своих местах — пакет считается валидным, функция возвращает “1». В качестве аргумента, функция принимает указатель, куда складывать принятый пакет.

↑ приложение под android для машинки

Нет, так подробно, как программу для МК я разбирать не буду. В разработке ПО под Android я ещё новичок и не готов рассказывать достаточно компетентно и глубоко.

Основная функция программы – передача данных модулю HC-06 по каналу Bluetooth. Программа имеет не замысловатый интерфейс.

Сверху выпадающий список спаренных Bluetooth устройств для выбора модуля. Сначала этого списка не было, но уже под конец работы над статьёй решил сделать по-человечески, ведь не все смогут разобраться в исходниках.

Дальше кнопка «Выкл» — включает/отключает связь с «HC-06». Ниже слева направо: передаваемое значение ШИМ левого канала, тип датчика, значение правого канала. Ниже два слайдера регулировки чувствительности скорости и поворота.

В программе реализовано два типа управления машинкой. Для переключение типа датчика нужно коснуться надписи названия датчика: «Наклон» или «Шаркать».

1. Управление машинкой с помощью наклона телефона. Нулевое положение телефона — горизонтальное. При наклоне телефона вперед значение ШИМ увеличивается пропорционально наклону в диапазоне от 0 до 255. При наклоне телефона назад значение ШИМ уменьшается пропорционально наклону в диапазоне от 0 до -255

Что бы повернуть влево или вправо — нужно наклонить телефон вперед или назад и, одновременно, влево или вправо соответственно. Да, как в настоящей машине, пока не поддашь газку поворот не осуществляется.

2. Управление касанием. Моё фирменное название для такого управления — «шаркать».

Можно воспринимать как тачпад. При касании в сером квадрате, значение ШИМ увеличивается/уменьшается в зависимости от места касания, чем дальше от центра вниз или вверх тем больше/меньше значение.

Никаких «красивостей» и наворотов нет. Вот вроде бы и всё.

↑ программа микроконтроллера

Программа МК умеет принимать команды по последовательному интерфейсу с Bluetooth-модуля.

И, в соответствии с командами, управлять левой и правой парой приводов. Реверс и управление скоростью работают при помощи ШИМ.

Код в достаточной мере прокомментирован. Хочу отдельно остановиться на моей реализации обмена данными.Приём данных у меня реализован через кольцевой буфер. Вещь не новая и реализаций много.

Функции кольцевого буфера у меня вынесены в отдельную библиотеку состоящую из: заголовочного файла ring_buffer.h и файла реализаций функций ring_buffer.сДля использования библиотеки её нужно подключить в main.c

#include "ring_buffer.h"

Далее, в заголовочном файле необходимо настроить библиотеку. Для настройки необходимо задать всего четыре директивы:

#define RX_PACKET_SIZE		7	// Размер RxD пакета
#define BUFFER_SIZE			16	
// Размер приёмного буфера. Должен быть в два раза больше RX_PACKET_SIZE

#define START_BYTE			's'     // Стартовый байт
#define STOP_BYTE			'e'     // Стоповый байт

Собственно настраивать больше нечего.

Использование кода В main.c настраиваем USART микроконтроллера.Вызываем функцию настройки USART

USART_Init(MYUBRR);
#define BAUD 9600
#define MYUBRR F_CPU/16/BAUD-1

void USART_Init( unsigned int ubrr )
{
	/* Set baud rate */
	UBRRH = (unsigned char)( ubrr >> 8 );
	UBRRL = (unsigned char)ubrr;
	/* Enable receiver and transmitter */
	UCSRB = (1 << TXCIE) | (1 << RXCIE)| (1 << TXEN) | (1 << RXEN);
	/* Set frame format: 8data, 2stop bit */
	UCSRC = (1 << URSEL) | (0 << USBS) | (3 << UCSZ0);
}

Arduino – машинка на ардуино с управлением на телефоне

Я статью не читал, но сслыку на нее дам, может как поможет:

Там главное картинка:

1639919190157.png

Если посмотреть , то 24 это статсу LED , т.е. светодиод, который горит, когда есть соединение с модулем по БТ . Его можно проводом подключить к любому пину ардуины на вход и соотв. читать уровень – высокий – есть соединение, низкий – потеряно.

Только надо проверить , что при звонке на телефон статусный светодиод гаснет. На всякий случай.

Если не гаснет, то тогда только как сказал

@bort707

, в кратце это так: команды должны передаваться с каким то интервалом на машинку. С каким я не знаю, можно посмотреть в коде. При получении новой команды по БТ на машинке надо запомнить время получения сигнала. Там где он обрабатывается.

А ниже можно сделать условие : если со времени получения команды прошло больше скажем 500 мс, то остановить машинку. 500 мс надо подобрать. Должно быть таким, что бы можно было пропустить одну команду, не более. может быть меньше сделать – все зависит как часто отправляет команды передатчик. Но есть но! Если передатчик “экономит” эфир и отсылает команды только по изменению их, то надо еще и править передатчик, что бы команды повторялись.

§

Я статью не читал, но сслыку на нее дам, может как поможет:

Там главное картинка:

1639919190157.png

Если посмотреть , то 24 это статсу LED , т.е. светодиод, который горит, когда есть соединение с модулем по БТ . Его можно проводом подключить к любому пину ардуины на вход и соотв. читать уровень – высокий – есть соединение, низкий – потеряно.

Только надо проверить , что при звонке на телефон статусный светодиод гаснет. На всякий случай.

Если не гаснет, то тогда только как сказал

@bort707

, в кратце это так: команды должны передаваться с каким то интервалом на машинку. С каким я не знаю, можно посмотреть в коде. При получении новой команды по БТ на машинке надо запомнить время получения сигнала. Там где он обрабатывается.

А ниже можно сделать условие : если со времени получения команды прошло больше скажем 500 мс, то остановить машинку. 500 мс надо подобрать. Должно быть таким, что бы можно было пропустить одну команду, не более. может быть меньше сделать – все зависит как часто отправляет команды передатчик. Но есть но! Если передатчик “экономит” эфир и отсылает команды только по изменению их, то надо еще и править передатчик, что бы команды повторялись.

Выбираем компоненты

В прошлом мы с приятелями

собственную прошивку для роботов Lego Mindstorms NXT, поддерживающую удалённое управление роботом по bluetooth с Android-коммуникатора. Для экспериментов тогда была приобретена отладочная плата Olimex SAM7 с ARM7 на борту, которую в этот раз можно использовать в качестве управляющего контроллера.

В качестве шасси используем корпус игрушечной машинки.

Нужен bluetooth-модуль. Результат хотелось получить быстро, поэтому модуль был выбран из единственного доступного в магазине на тот момент BTM-112, хотя он оказался сравнительно дорогим.

Кроме того, оказалось, что управление с платы не может идти напрямую на моторы, нужен усиливающий контроллер (об этом чуть позже).

В сумме наши компоненты:

Теперь все необходимое у нас есть.

Драйвер двигателей

Драйвер двигателя L298N
Драйвер двигателя L298N

Ардуино – достаточно ранимое устройство, не терпящее больших нагрузок по току. Соединяя его с “брутальными” мощными двигателями, не избежать беды. Поэтому для нормальной совместной работы нам нужно будет включить в схему робота компонент, отвечающий за управление двигателями – подающий и отключающий ток на их обмотки.

Речь идет о микросхеме или готовом модуле, которые называют драйвером двигателя. На нашем сайте есть статьи, посвященные драйверам, построенным на схеме H-моста.  Если вы покупаете готовые шасси, то обязательно предусмотрите возможность размещения на них подходящего драйвера.

Конструкция, шасси и двигатели робота на ардуино

Для того, чтобы что-то поехало или стало перемещаться, надо снабдить “это” колесами, гусеницами или манипуляторами-ногами. Вот тут выбор совершенно не ограничен, можно использовать совершенно любые комбинации и сочетания платформ. Как правило, в качестве начального варианта берутся уже готовые наборы платформ с Алиэкспресс.

Двигатель шасси ардуино
Двигатель, шасси и колеса машинки на ардуино

Если работать со стандартными наборами вам не интересно, можно создать платформу своими руками. Например, разобрать игрушечные радиоуправляемые машинки или любые двигатели на 5-12 вольт, с редукторами или без. Колеса можно создать и самим, что тоже является интересной задачей.

Машина-робот на базе arduino с управление через bluetooth

#include // Подключаем библиотеку для управления двигателями

#include // Подключаем библиотеку для сервоприводов

#include // Подключаем библиотеку для работы с Serial через дискретные порты

//Создаем объекты для двигателей
AF_DCMotor motor1(1); //канал М1 на Motor Shield — левый
AF_DCMotor motor2(2); //канал М2 на Motor Shield — правый

// Создаем объект для сервопривода
Servo vservo;

SoftwareSerial BTSerial(A0, A1); // RX, TX

// Создаем переменную для команд Bluetooth
char vcmd;
// Создаем переменные для запоминания скорости двигателей
int vspdL, vspdR;
/* Создаем переменную, на значение которой будет уменьшаться скорость при плавных поворотах.
Текущая скорость должна быть больше этого значения. В противном случае двигатели со стороны направления поворота просто не будут вращаться */
int vspd = 200;

Смотрите про коптеры:  Роботизированная машина. Часть III: Bluetooth

void setup() {
// Устанавливаем скорость передачи данных по Bluetooth
BTSerial.begin(9600);
// Устанавливаем скорость передачи данных по кабелю
Serial.begin(9600);
// Выбираем пин к которому подключен сервопривод
vservo.attach(9); // или 10, если воткнули в крайний разъём
// Поворачиваем сервопривод в положение 90 градусов при каждом включении
vservo.write(90);
// Устанавливаем максимальную скорость вращения двигателей
vspeed(255,255);
}

void loop() {
// Если есть данные
if (BTSerial.available())
{
// Читаем команды и заносим их в переменную. char преобразует код символа команды в символ
vcmd = (char)BTSerial.read();
// Отправляем команду в порт, чтобы можно было их проверить в «Мониторе порта»
Serial.println(vcmd);

// Вперед
if (vcmd == ‘F’) {
vforward();
}
// Назад
if (vcmd == ‘B’)
{
vbackward();
}
// Влево
if (vcmd == ‘L’)
{
vleft();
}
// Вправо
if (vcmd == ‘R’)
{
vright();
}
// Прямо и влево
if (vcmd == ‘G’)
{
vforwardleft();
}
// Прямо и вправо
if (vcmd == ‘I’)
{
vforwardright();
}
// Назад и влево
if (vcmd == ‘H’)
{
vbackwardleft();
}
// Назад и вправо
if (vcmd == ‘J’)
{
vbackwardright();
}
// Стоп
if (vcmd == ‘S’)
{
vrelease();
}
// Скорость 0%
if (vcmd == ‘0’)
{
vspeed(0,0);
}
// Скорость 10%
if (vcmd == ‘1’)
{
vspeed(25,25);
}
// Скорость 20%
if (vcmd == ‘2’)
{
vspeed(50,50);
}
// Скорость 30%
if (vcmd == ‘3’)
{
vspeed(75,75);
}
// Скорость 40%
if (vcmd == ‘4’)
{
vspeed(100,100);
}
// Скорость 50%
if (vcmd == ‘5’)
{
vspeed(125,125);
}
// Скорость 60%
if (vcmd == ‘6’)
{
vspeed(150,150);
}
// Скорость 70%
if (vcmd == ‘7’)
{
vspeed(175,175);
}
// Скорость 80%
if (vcmd == ‘8’)
{
vspeed(200,200);
}
// Скорость 90%
if (vcmd == ‘9’)
{
vspeed(225,225);
}
// Скорость 100%
if (vcmd == ‘q’)
{
vspeed(255,255);
}
}
}

// Вперед
void vforward() {
vspeed(vspdL,vspdR);
vforwardRL();
}

// Вперед для RL
void vforwardRL() {
motor1.run(FORWARD);
motor2.run(FORWARD);
}

// Назад
void vbackward() {
vspeed(vspdL,vspdR);
vbackwardRL();
}

// Назад для RL
void vbackwardRL() {
motor1.run(BACKWARD);
motor2.run(BACKWARD);
}

// Влево
void vleft() {
vspeed(vspdL,vspdR);
motor1.run(BACKWARD);
motor2.run(FORWARD);
}

// Вправо
void vright() {
vspeed(vspdL,vspdR);
motor1.run(FORWARD);
motor2.run(BACKWARD);
}

// Вперед и влево
void vforwardleft() {
if (vspdL > vspd) {
vspeed(vspdL-vspd,vspdR);
}
else
{
vspeed(0,vspdR);
}
vforwardRL();
}

// Вперед и вправо
void vforwardright() {
if (vspdR > vspd) {
vspeed(vspdL,vspdR-vspd);
}
else
{
vspeed(vspdL,0);
}
vforwardRL();
}

// Назад и влево
void vbackwardleft() {
if (vspdL > vspd) {
vspeed(vspdL-vspd,vspdR);
}
else
{
vspeed(0,vspdR);
}
vbackwardRL();
}

// Назад и вправо
void vbackwardright() {
if (vspdR > vspd) {
vspeed(vspdL,vspdR-vspd);
}
else
{
vspeed(vspdL,0);
}
vbackwardRL();
}

// Стоп
void vrelease(){
motor1.run(RELEASE);
motor2.run(RELEASE);
}

// Изменение скорости
void vspeed(int spdL,int spdR){
if (spdL == spdR) {
vspdL=spdL;
vspdR=spdR;
}
motor1.setSpeed(spdL);
motor2.setSpeed(spdR);
}

Метод loop() и дополнительные функции

В постоянно повторяющемся методе loop() происходит считывание данных. Сначала рассмотрим основной алгоритм, а потом функции, задействованные в нем.


void loop() {
  //если хоть несчитанные байты
  if(BTSerial.available() > 0) {
     //считываем последний несчитанный байт
     char a = BTSerial.read();
     
    if (a == '@') {
      //если он равен @ (случайно выбранный мною символ)
      //обнуляем переменную val
      val = "";
      //указываем, что сейчас считаем скорость
      readSpeed = true;

    } else if (readSpeed) {
      //если пора считывать скорость и байт не равен решетке
      //добавляем байт к val
      if(a == '#') {
        //если байт равен решетке, данные о скорости кончились
        //выводим в монитор порта для отладки
        Serial.println(val);
        //указываем, что скорость больше не считываем
        readSpeed = false;
        //передаем полученную скорость в функцию езды 
        go(val.toInt());
        //обнуляем val
        val = "";
        //выходим из цикла, чтобы считать следующий байт
        return;
      }
      val =a;
    } else if (a == '*') {
      //начинаем считывать угол поворота
      readAngle = true; 
    } else if (readAngle) {
      //если решетка, то заканчиваем считывать угол
      //пока не решетка, добавляем значение к val
      if(a == '#') {
       Serial.println(val);
       Serial.println("-----");
        readAngle = false;
        //передаем значение в функцию поворота
        turn(val.toInt());
        val= "";
        return;
      }
      val =a;
    }
    //получаем время последнего приема данных
    lastTakeInformation = millis();
  } else {
     //если несчитанных байтов нет, и их не было больше 150 миллисекунд 
     //глушим двигатели
     if(millis() - lastTakeInformation > 150) {
     lastTakeInformation = 0;
     analogWrite(angleSpeed, 0);
     analogWrite(speedRight, 0);
     analogWrite(speedLeft, 0);
     }
     
  }
}

Получаем результат: с телефона отправляем байты в стиле “@скорость#угол#” (например, типичная команда “@200#60#”. Данный цикл повторяется каждый 100 миллисекунд, так как на андроиде мы установили именно этот промежуток отправки команд. Короче делать нет смысла, так как они начнут становится в очередь, а если сделать длиннее, то колеса начнут двигаться рывками.

Все задержки через команду delay(), которые вы увидите далее, подобраны не через физико-математические вычисления, а опытным путем. Благодаря всем выставленным задрежам, машинка едет плавно, и у всех команд есть время на отработку (токи успевают пробежаться).

В цикле используются две побочные функции, они принимают полученные данные и заставляют машинку ехать и крутится.

void go(int mySpeed) {
  //если скорость больше 0
  if(mySpeed > 0) {
  //едем вперед
  digitalWrite(dirRight, HIGH);
  analogWrite(speedRight, mySpeed);
  digitalWrite(dirLeft, HIGH);
  analogWrite(speedLeft, mySpeed);
  } else {
    //а если меньше 0, то назад
    digitalWrite(dirRight, LOW);
    analogWrite(speedRight, abs(mySpeed)   30);
    digitalWrite(dirLeft, LOW);
     analogWrite(speedLeft, abs(mySpeed)   30);
  }
  delay(10);
 
}

void turn(int angle) {
  //подаем ток на плюс определителя угла
  digitalWrite(pinAngleStop, HIGH);
  //даем задержку, чтобы ток успел установиться
  delay(5);
  
  //если угол 150 и больше, поворачиваем вправо 
  //если 30 и меньше, то влево 
  //промежуток от 31 до 149 оставляем для движения прямо
  if(angle > 149) {
        //если замкнут белый, но разомкнуты  черный и красный
        //значит достигнуто крайнее положение, дальше крутить нельзя
        //выходим из функции через return 
        if( digitalRead(pinWhite) == HIGH && digitalRead(pinBlack) == LOW && digitalRead(pinRed) == LOW) {
          return;
        }
        //если проверка на максимальный угол пройдена
        //крутим колеса
        digitalWrite(angleDirection, HIGH);
        analogWrite(angleSpeed, speedTurn);
  } else if (angle < 31) { 
        if(digitalRead(pinRed) == HIGH && digitalRead(pinBlack) == HIGH && digitalRead(pinWhite) == HIGH) {
          return;
        }
        digitalWrite(angleDirection, LOW);
        analogWrite(angleSpeed, speedTurn);
  }
  //убираем питание 
  digitalWrite(pinAngleStop, LOW);
  delay(5);
}

Поворачивать, когда андроид отправляет данные о том, что пользователь зажал угол 60, 90, 120, не стоит, иначе не сможете ехать прямо. Да, возможно сразу не стоило отправлять с андроида команду на поворот, если угол слишком мал, но это как-то коряво на мой взгляд.

Настройки приложения

Скриншот настроек Android приложения CxemCar версии 1.0:

К каждой настройке внизу есть небольшое пояснение, поэтому с их предназначением думаю не должно возникнуть вопросов. Однако на некоторых из них хотелось бы остановиться более подробно.

Точка разворота для мотора (ось X)

При наклоне Android-устройства влево или вправо программа притормаживает тот двигатель, в сторону которого наклонено устройство, т.о. осуществляется поворот. Однако, когда значение наклона доходит до заданной в настройках точки разворота, то двигатель начинает вращаться в другую сторону.

MAC адрес

Для установления связи с Bluetooth модулем машинки, в настройках приложения необходимо задать MAC-адрес. Предварительно необходимо настроить сопряжение устройств в настройках вашего Android-устройства. Для этого переходим в Настройки -> Bluetooth и нажимаем “Поиск устройств”, телефон находит наш Bluetooh-модуль, нажимаем по нему и вводим пароль (как правило 1234).

Узнать Bluetooth адрес модуля можно из какого-нибудь приложения, к примеру Bluetooth Terminal. Для этого внизу нажимаем “Connect a device – Secure” и в появившемся окошке нажимаем кнопку “Scan for devices”. ПО сканирует Bluetooth устройства и отобразит их MAC-адреса:

Этот MAC-адрес и необходимо прописать в настройках приложения CxemCAR.

Само ПО под Android я не буду расписывать, т.к. оно довольно таки громоздкое и поэтому если у вас возникнут какие-либо вопросы по нему, то обращайтесь тему поддержки данного проекта на форуме.

Переменные


Для начала рассмотрим константы и переменные, которые понадобятся.

#include <SoftwareSerial.h>
//переназначаем пины входавывода блютуза
//не придется вынимать его во время заливки скетча на плату
SoftwareSerial BTSerial(8, 9);

//пины поворота и скорости
int speedRight = 6;
int dirLeft = 3;
int speedLeft = 11;
int dirRight = 7;

//пины двигателя, поворачивающего колеса
int angleDirection = 4;
int angleSpeed = 5;

//пин, к которому подключен плюс штуки, определяющей поворот
//подробная технология описана в первой части
int pinAngleStop = 12;

//сюда будем писать значения
String val;
//скорость поворота
int speedTurn = 180;
//пины, которые определяют поворот
//таблица и описания системы в первой статье
int pinRed = A0;
int pinWhite = A1;
int pinBlack = A2;

//переменная для времени
long lastTakeInformation;
//переменные, показывающие, что сейчас будет считываться
boolean readAngle = false;
boolean readSpeed = false;

Питание робота

Обеспечение правильной схемы питания – это то, что очень часто оказывается на последнем месте в списке приоритетов начинающих ардуинщиков. Между тем, именно ошибки в схеме электропитания становятся основными причинами проблем, возникающих в процессе работы умных устройств на Ардуино.

Создавая ардуино-машинку нужно предусмотреть питание контроллера, двигателей, драйвера и датчиков. У всех них есть свои ограничения и особенности работы, требуется создать оптимальное по весу и сложности решение, позволяющее учесть все эти ограничения.

Питание робота
Питание робота на Ардуино

Создавая по-настоящему автономное устройство робота, нужно побеспокоиться и о времени его работы, и о возможности быстрой подзарядки или смены батареек. Как правило, выбираются решения из следующих вариантов:

  • Обычные батарейки AA. Тут нужно понимать, что платы Arduino Uno, Nano и большинство двигателей, используемых в Ардуино-робототехнике, требуют напряжения в диапазоне 6-9 вольт. Поэтому придется собрать вместе последовательно не менее 4 батареек на 1,5 В, причем сами батарейки должны быть хорошего качества и обеспечивать работу с достаточно большим током. Например, большинство солевых батареек этим критериям не удовлетворяют. Батарейки AAA при создании ардуино-машинок практически не используются из-за своей пониженной емкости (хотя могут использоваться в миниатюрных моделях, где размер имеет первостепенное значение).
  • Аккумулятор AA. Здесь возникает еще большее ограничение по напряжению и току. Большинство аккумуляторов выдают напряжение 1,2 вольт, поэтому их требуется больше для “собирания” нужных нам 6-9 вольт. Несомненным плюсом является возможность перезарядки.
  • Литиевые аккумуляторы 18650. Это уже “серьезная артиллерия”, позволяющая получить большое время автономной работы, возможность подзарядки и приемлемые характеристики по току и напряжению. Рабочее напряжение для таких элементов питания – 3,7 В, что позволяет собирать готовую схему питания всего из двух элементов.
  • Другие источники питания. Сюда можно включить как более мощные и габаритные никель-металлгидридные, кадмиевые аккумуляторы, так и многочисленные литий-ионные “плоские” варианты, используемые в дронах, смартфонах или другой портативной цифровой технике.

Каким бы ни был источник питания, нужно обеспечить его надежное крепление, удобное расположение, защиту от воздействия недружелюбной окружающей среды. Если вы подключаете к одному источнику и контролер, и двигатели, и датчики, то нужно позаботиться о правильной схеме, включающей, например, надежную связь “по земле” всех устройств.

Смотрите про коптеры:  Радиоуправляемый катер своими руками - Сделай сам

Подключаем bluetooth к машинке

Мы собираемся использовать модуль Bluetooth через  SoftwareSerial (библиотеку SoftwareSerial.h), поэтому подключаем модуль блютуз к 3 и 4 цифровым пинам ардуино.  RX к D3,   TX к D4

Схема ардуино робота машинки 5
Схема подключения Bluetooth к ардуино машинке

Платформа робота готова! Теперь осталось загрузить прошивку для контроллера Ардуино и программу для смартфона RC CAR. Вы можете посмотреть на нашем сайте обзор Android приложений для работы с Arduino.

Подключаем двигатели и плату

С питанием платформы мы разобрались, теперь подключим остальные компоненты. Для начала припаиваем провода к моторам, затем обматываем их изолентой, чтобы случайно в дальнейшем не оторвать контакты. Можно сделать так, что в итоге на 2 двигателя будут идти всего два провода вместо 4х. Это немного упростит монтаж и сэкономит место на платформе.

Монтируем драйвер двигателей на платформу так, чтобы его радиатор был спереди. ЭТО ВАЖНО! В противном случае, вам придется переписывать программу для микроконтроллера.

Ардуино робот драйвер
Драйвер двигателя для Ардуино робота

Затем размещаем холдер и плату БМС. Не забываем оставлять место спереди для последующего монтажа каких-либо сенсоров. Ардуиио нужно разместить так, чтобы была в дальнейшем возможность подключить его к ПК для прошивки. Это же правило относится и к модулю для зарядки аккумуляторов.

Питание для ардуино и других электронных компонентов мы возьмем от драйвера двигателей.

Пример платформы робота-машины на ардуино

Предлагаем инструкцию по созданию универсальной платформы, которая потом пригодится для создания самых разных проектов, независимо от выбранного контролера или типа шасси. Вы можете использовать стандартные варианты из Алиэкспресса, как на видео, можете снабдить машину гусеницами и создать вездеход,  можете придумать вообще ни на что не похожий вариант.

Робот на Ардуино
Робот на Ардуино

Для реализации проекта нам понадобится:

  • Контроллер Ардуино (в нашем случае, Arduino Nano).
  • Драйвер двигателя L298N.
  • Двигатели с редукторами.
  • Корпус и шасси для крепления колес и оборудования
  • Корпус для аккумуляторов 18650 с выключателем.
  • Коммутационные провода.

Дополнительное оборудование, которое потребуется для создания полноценного проекта:

  • Датчик расстояния и серво-мотор, на который он установлен.
  • Инфракрасные датчики линии.
  • Светодиоды для индикации и “красоты”.
  • Пьезодинамик – пищалка.
  • Bluetooth модуль (если собираетесь управлять машинкой дистанционно).
  • Sensor shield (упрощает коммутацию).
  • Модуль контроля заряда и подзарядки аккумуляторов.
  • Сами аккумуляторы.
Схема ардуино-робота машинки 1
Общая схема машинки на Ардуино

Принцип работы

В Android устройстве формируются команды перемещения машинки в зависимости от наклона смартфона/планшета, либо от нажатой кнопки. Все расчеты производятся в Android-приложении, и сразу же вычисляются значения ШИМ для левого и правого двигателей. Приложение обладает гибкими настройками, такими как диапазон ШИМ, чувствительность наклона, минимальный порог ШИМ и др.

По Bluetooth передаются команды вида:L-255rR-120rL – команда для левого двигателя, R – для правогоминус обозначает вращение двигателя для движения назад255 – число ШИМ, для Arduino это максимальная скорость вращенияr – конец команды.

L255rR-255rПо данной команде левый двигатель будет вращаться вперед, а правый назад, что заставит машинку вращаться вокруг своей оси против часовой стрелки.

H1rКоманда включения дополнительного канала, к которому например можно подключить фары, звуковой сигнал и т.п. В качестве примера, приведен только один дополнитльный канал, однако ПО легко модифицировать, чтобы задействовать большее количество дополнительных каналов.

Символы команд L, R и H можно задавать в настройках Android-приложения.

В программе контроллера предусмотрен таймер, который отключает двигатели, если последняя команда была получена более, чем n-секунд назад. Настройка количества секунд хранится в EEPROM памяти контроллера и может быть изменена с Android устройства. Диапазон данной настройки составляет от 0.1 сек до 99.9 секунд.

Также, настройку можно совсем отключить. Но тогда, при потере связи машинка будет ехать, пока не будет выключено питание.Для работы с памятью микроконтроллера предусмотрены команды Fr – чтение значений и Fw – запись значений.

Робот на ардуино своими руками

В отличие от других проектов, создание робота – автомобиля (Arduino Car) требует понимания и навыков работы сразу с несколькими важными компонентами, поэтому не стоит приступать к созданию машинок без получения базовых навыков работы с платформой Arduino.

Робот машина на Ардуино
Робот машина на Ардуино

Вот список ключевых компонентов, которые обязательно встретятся в проекте.

Сборка

Можно купить готовое шасси для машинки сразу вместе с моторами и колёсами. Останется только установить электронику и всё подключить.

Но намного интереснее создать это самому. Для изготовления подойдёт любой листовой материал, который вам будет легко обрабатывать, и который достаточно лёгкий. Например, оргалит, текстолит, фанера. Я выбрал оргстекло, что сделало мою машинку даже очень похожей на шасси из магазина.

Из инструментов могут понадобиться:

  • Ручной или электрический лобзик (я пользовался ручным), чтобы отрезать нужные куски от материала.
  • Дрель или шуроповёрт, свёрла.
  • Крепёжные элементы — болты, гайки и саморезы любого подходящего диаметра.

Получилось дёшево и сердито. А главное работает.

Паять я тоже ничего не стал, чтобы потом можно было бы легко разобрать эту машинку и модернизировать. Припаивал только провода к моторам.

В магазинном наборе для крепления моторов используются специальный кронштейны, к которым сам мотор прикручивается болтами диаметром 3 мм. Но болтов нужного диаметра и длины у меня не оказалось, хоть и можно было изготовить аналогичный кронштейн. Поэтому пришлось изощряться и использоваться даже детали детского конструктора, чтобы надёжно прикрепить моторы. На видео крепление моторов рассмотрено лучше.

Платы в идеале лучше прикручивать короткими болтами с диаметром 3 мм. Но и таких у меня не оказалось. Поэтому пришлось делать в оргстекле отверстия 2 мм и прикручивать платы саморезами. Держится вполне нормально.

У модуля Bluetooth особая проблема крепления — там отверстий для крепления нет вообще. Пришлось прижимать плату к раме другой деталью из оргстекла. Тут главное не сжать слишком сильно, чтобы не повредить.

Аккумулятор крепится аналогично Bluetooth модулю, только снизу.

И обязательно прикручиваем мебельное поворотное колесо, которое станет опорным, и не будет приводным. Следите за тем, чтобы вся конструкция была в горизонтальном положении, когда стоит на всех трёх колёсах.

Соединяем управляющую плату с моторами

Изначально я думал, что смогу использовать управление со старой платы (зашитой в саму машинку), но оказалось, что использовать её в чистом виде нельзя, поскольку управление моторами было крепко сцеплено с радиочастью. Управлять моторами напрямую с ног головного контроллера тоже не получится из-за малой выходной мощности микросхемы.

К сожалению, опыта в этой области у меня нет никакого (все-таки я программист, а не схемотехник), поэтому пришлось прибегнуть к помощи знакомых. По совету я взял микросхему усилителя L298N (избыточную для моих нужд, зато работающую из коробки) и собрал

Напомню, препарируемая машинка детская, и управление у нее немного хромает; когда я начал разбираться с моторами, я понял одну из причин. Для механизма поворота используется не сервопривод, а обычный электродвигатель, который может находиться в одном из трех состояний (выкл., вперед и назад). Таким образом, о плавном повороте мечтать не приходится.

В общем, функционально схема простая, один мотор используется как двигатель, второй мотор — как руль (у него стоит блокиратор на определенном угле поворота).Для управления каждым мотором нужно подать напряжение на соответствующие управляющие ноги (положительное или отрицательное напряжение либо нуль).

Так как Android-приложение передает плавное управление, состояние моторов изменяется по преодолению заданного порога.

Код получился очень простой, я не буду приводить его здесь, но в конце поста есть ссылки на исходники всего проекта.

Схема подключения

Питание платы берётся от «Кроны» и подаётся на Arduino через пины VIN и GND. Также подаётся отдельно на драйвер двигателей через порты 12V и GND.

Blutooth модуль HC-06 получает питание в 3,3 вольта от Arduino. Если подключить к 5 вольтам, то тоже работает нормально. Выход RX модуля подключается к TX на Arduino, а TX — в RX, то есть наоборот.

На драйвере двигателей нужно снять две боковые перемычки — Enable. Пины под ними позволят нам управлять скоростью вращения двигателей. И эти пины подключаются к Arduino обязательно к ШИМ-портам (обозначенные знаком ~). На схеме это порты 3 и 5.

Питание моторов подаётся на Input драйвера от Arduino с портов 2 и 4, 6 и 7. А сами моторы подключаются к Output A и Output B драйвера.

Если после сборки и прошивки, вы подаёте на машинку сигнал двигаться вперёд, а оба колеса при этом вращаются в разных направления, то нужно поменять местами провода на одном из моторов в выходе Output.

Если при движении вперёд машинка едет назад, то нужно поменять местами провода Output обоих двигателей (хотя, кто знает, где у ней перед, а где зад…).

Если при повороте налево, машинка едет направо, то нужно поменять местами Output A и Output B.

Если подключить всё по схеме, то скетч переделывать не нужно будет.

Схема электропитания робота автомобиля

Вопрос организации правильного стабильного электропитания является одним из самых важных в любом проекте.В нашей модели применена рекомендованная нами схема питания, основанная на использовании литийионных аккумуляторов формата 18650 и платы защиты их от переразряда и перезаряда.

Давайте разберем самый простой вариант схемы питания электромоторов. Перед началом сборки лучше заранее припаять провода к моторам.

Схема ардуино робота машинки 2
Схема питания и подключения двигателей в ардуино автомобиле

Все достаточно стандартно и вы найдете в интернете десятки подобных примеров. Но в этой схеме есть большой минус – в случае полного разряда аккумуляторы придут в негодность.

Машинка на Ардуино
Машинка на Ардуино

Для добавления контроллера разряда придется внести следующие изменения в схему:

Схема ардуино робота машинки 3
Схема питания с контролем разряда аккумулятора

Теперь аккумуляторы будут защищены, но здесь нет возможности заряжать их.

Питание ардуино
Питание робота Ардуино

Для зарядки можно использовать модуль повышения напряжения с 5v до необходимого уровня зарядки, который зависит от количества серий используемых аккумуляторов. Он имеет гнездо типа микро USB и при частом использовании оно может сломаться, поэтому мы рекомендуем установить дополнительное гнездо для последующей подзарядки пяти вольтовым блоком питания. Для зарядки двух литий-ионных аккумуляторов необходимо настроить выходное напряжение на 8,4 Вольта.

Схема питания ардуино робота машинки
Схема питания с модулем зарядки для ардуино робота машинки
Оцените статью
Радиокоптер.ру
Добавить комментарий

Adblock
detector