Дрон своими руками: Урок 3. Силовая установка.

Дрон своими руками: Урок 3. Силовая установка. Лодки

Несущие винты (Пропеллеры)

Несущие винты (пропеллеры, сокр. пропы) для многороторных БЛА берут своё начало от винтов радиоуправляемых самолётов. Многие спросят: почему бы не использовать лопасти вертолёта? Несмотря на то, что это уже было сделано, представьте себе размеры гексакоптера с лопастями от вертолёта. Также стоит отметить, что вертолётная система требует изменения шага лопастей, а это существенно усложняет конструкцию.

Вы также можете спросить, почему бы не использовать турбореактивный двигатель, турбовентиляторный двигатель, турбовинтовой двигатель и т.д? Безусловно они невероятно хороши для обеспечения большой тяги, но при этом требуют большое количество энергии.

Лопасти и диаметр

Несущие винты большинства мультироторных БЛА имеют две, либо три лопасти. Наибольшее применение получили винты с двумя лопастями. Не думайте, что добавление большего количества лопастей автоматически приведёт к увеличению тяги; каждая лопасть работает в потоке, возмущенном предыдущей лопастью, снижая КПД пропеллера. Несущий винт малого диаметра имеет меньшую инерцию и следовательно его легче ускорять и замедлять, что актуально при акробатическом полёте.

Дрон своими руками: Урок 3. Силовая установка.

Дрон своими руками: Урок 3. Силовая установка.

Шаг/угол атаки/эффективность/тяга

Тяга, создаваемая несущим винтом, зависит от плотности воздуха, числа оборотов винта, его диаметра, формы и площади лопастей, а также от его шага. Эффективность винта связана с углом атаки, который определяется как шаг лопасти минус угол спирали (угол между результирующей относительной скоростью и направлением вращения лопасти). Сама эффективность — это отношение выходной мощности к входной. Большинство хорошо спроектированных винтов имеют КПД более 80%. На угол атаки влияет относительная скорость, поэтому пропеллер будет иметь разную эффективность при разных скоростях мотора. На эффективность также сильно влияет передний край лопасти несущего винта, и очень важно, чтобы он был максимально гладким. Несмотря на то, что конструкция с переменным шагом была бы наилучшей, дополнительная сложность, необходимая по сравнению с присущей многороторной простотой, означает, что пропеллер с переменным шагом почти никогда не используется.

Дрон своими руками: Урок 3. Силовая установка.

Дрон своими руками: Урок 3. Силовая установка.

Вращение

Несущие винты рассчитаны на вращение по часовой стрелке (CW), либо против часовой стрелки (CCW). На направление вращения указывает наклон лопасти (смотреть на пропеллер с торца). Если правая кромка лопасти выше — CCW, если левая кромка — CW. Если конструкция вашего беспилотника подразумевает перевёрнутое расположение моторов (как в случае с конфигурациями Vtail, Y6, X8) обязательно измените направление вращения несущих винтов, чтобы тяга была направлена вниз. Лицевая сторона несущего винта всегда должна быть обращена к небу. Документация которая идёт с контроллером полёта как правило содержит информацию о направлении вращения каждого винта, для каждой поддерживаемой контроллером многомоторной конфигурации.

Дрон своими руками: Урок 3. Силовая установка.

Материалы исполнения

Материал(ы), используемые для изготовления несущих винтов (пропеллеров), могут оказывать умеренное влияние на лётные характеристики, но безопасность должна быть главным приоритетом, особенно, если вы новичок и не опытны.

  • Пластмасса (ABS/Нейлон и т.д.) — является самым популярным выбором, когда речь заходит о многомоторных БЛА. Во многом это связано с низкой стоимостью, достойными лётными характеристиками и показательной долговечностью. Как правило в случае краша, по крайней мере, один пропеллер оказывается сломанным, и пока вы осваиваете дрон и учитесь летать, у вас всегда будет много сломанных пропов. Жёсткость и ударопрочность пластикового винта может быть улучшена посредством усиления углеродным волокном (карбон), такой подход макс. результативен и не так дорог по сравнению с винтом полноценно исполненным и карбона.

Дрон своими руками: Урок 3. Силовая установка.

  • Фиброармированный полимер (углеродное волокно, нейлон усиленный карбоном и т.д.) — является «передовой» технологией во многих отношениях. Детали из углеродного волокна всё ещё не очень просты в изготовлении, и поэтому вы платите за них больше, чем за обычный пластиковый винт с аналогичными параметрами. Пропеллер изготовленный из углеродного волокна сложнее сломать или согнуть, и, следовательно, при краше, он нанесёт больший ущерб всему, с чем соприкоснётся. Одновременно с этим, карбоновые винты, как правило, хорошо сделаны, более жёсткие (обеспечивают минимальные потери в эффективности), редко требуют балансировки и имеют более лёгкий вес по сравнению с любыми другими материалами исполнения. Такие винты рекомендуется рассматривать только после того, как уровень пилотирования пользователя станет комфортным.

Дрон своими руками: Урок 3. Силовая установка.

  • Дерево — редко используемый материал для производства несущих винтов многороторных БЛА, поскольку для их изготовления требуется механическая обработка, которая в последствии делает деревянные пропеллеры дороже пластиковых. При этом дерево вполне прочное и никогда не гнётся. Отметим, что деревянные пропеллеры всё ещё применяют на радиоуправляемых самолётах.

Дрон своими руками: Урок 3. Силовая установка.

Складные

Складные пропы имеют центральную часть, которая соединяется с двумя поворотными лопастями. Когда центр (который соединен с выходным валом мотора) вращается, центробежные силы действуют на лопасти, выталкивая их наружу и по существу делая пропеллер «жёстким», с тем же эффектом, что и классический не складываемый винт. Из-за низкого спроса и большого количества требуемых деталей, складные пропеллеры встречаются реже. Основное преимущество складных пропов это компактность, а в сочетании со складной рамой, транспортировочные размеры дрона могут быть значительно меньше полётных. Сопутствующим преимуществом складного механизма является отсутствие необходимости, при краше, менять винт целиком, достаточно будет заменить только повреждённую лопасть.

Дрон своими руками: Урок 3. Силовая установка.

Установка

Как и БЛА, несущие винты могут имеют широкий диапазон размеров. Таким образом, в этой отрасли существует целый ряд «стандартных» диаметров вала двигателя. В связи с чем несущие винты часто поставляются с небольшим набором переходных колец (выглядят как шайбы с отверстиями разного диаметра в центре), которые устанавливают в центральное посадочное отверстие пропа, в случае если диаметр отверстия несущего винта оказался больше диаметра вала используемого мотора. Так как не все разработчики комплектуют пропы набором таких переходных колец, рекомендуется заблаговременно сверять диаметр отверстия приобретаемых пропов с диаметров вала вашего мотора.

Смотрите про коптеры:  Зачем дрону компас? — Немного больше чем просто хобби

Фиксироваться винт на моторе может исходя из того, какой из способов крепления поддерживает ваш мотор. Если вал мотора не подразумевает никаких вариантов крепежа (резьб. соединение, различные приспособления для крепления и т.д.), в таком случае применяются специальные адаптеры, такие как пропсейверы и цанговые зажимы.

Бесколлекторные моторы с наружным ротором (типа «Outrunner») как правило, в верхней его части, имеют несколько резьбовых отверстий рассчитанных под установку различных адаптеров и креплений. Не менее популярным вариантом крепления пропеллера на валу БК мотора является самозатягивающая гайка. Вал такого мотора на конце имеет резьбу, направление которой противоположно направлению вращения ротора. Такой подход исключает самопроизвольное откручивание фиксирующей гайки, обеспечивая безопасную и надежную эксплуатацию дрона.

Защита несущих винтов

Защита несущих винтов – призвана исключить прямой контакт силовой установки БЛА с встречным объектом, сохранив тем самым её целостность и работоспособность, а также не допустить получение травм о быстро вращающиеся пропеллеры в результате столкновения с людьми и животными. Защита пропеллеров крепится к основной раме. В зависимости от варианта исполнения может как частично перекрывать рабочую зону силовой установки, так и полностью (кольцевая защита). Защита винтов чаще всего применяется на небольших (игрушечных) БЛА. Применение в сборке элементов защиты несёт и ряд компромиссов, среди которых:

  • Может вызывать избыточную вибрацию.
  • Как правило выдерживает не сильные удары.
  • Может понизить тягу, если под пропеллером размещено слишком много крепёжных опор.

Дрон своими руками: Урок 3. Силовая установка.

Балансировка

Неудовлетворительная балансировка имеет место быть у большинства недорогих пропеллеров. Чтобы в этом убедиться, далеко ходить не надо, достаточно вставить в центральное посадочное отверстие винта карандаш (как правило при дисбалансе одна сторона будет тяжелее другой). В связи с чем настоятельно рекомендуется проводить балансировку своих пропов, перед тем как устанавливать их на моторы. Несбалансированный пропеллер будет вызывать избыточные вибрации, которые в свою очередь отрицательно влияют на работу полётного контролера (проявляется в некорректном поведении дрона в полёте), не говоря уже об увеличении шумности, повышенном износе элементов силовой установки и ухудшении качества съёмки подвешенной камеры.

Дрон своими руками: Урок 3. Силовая установка.

Пропеллер может быть уравновешен разными способами, но если вы строите беспилотник с нуля, то в арсенале инструментов обязательно должен быть недорогой балансир пропеллеров, позволяющий легко и просто определять дисбаланс веса в винте. Для выравнивания веса, вы можете либо отшлифовать наиболее тяжёлую часть пропа (равномерно шлифуется центральная часть лопасти, и не в коем случае не отрезайте часть пропеллера), также можно балансировать путём наклеивания отрезка скотча (тонкий) на более лёгкую лопасть (добавляете отрезки равномерно до тех пор пока не будет достигнут баланс). Обратите внимание, что чем дальше от центра вы делаете балансировочную модернизацию (шлифование или добавление ленты) пропеллера, тем больше будет эффект, основанный на принципе крутящего момента.

ESC

ESC (англ. Electronic Speed Controller; рус. электронный контроллер скорости) — позволяет полётному контроллеру управлять скоростью и направлением вращения мотора. При правильном напряжении, ESC должен выдерживать макс. ток, который может потреблять мотор, а также ограничивать ток проходящий через фазу при коммутации. Большинство ESC, применяемых в беспилотном хобби, позволяют мотору вращаться только в одном направлении, однако с правильной прошивкой они могут работать в обоих направлениях.

Дрон своими руками: Урок 3. Силовая установка.

Подключение

Изначально ESC может сбивать с толку, потому что для его подключения доступно несколько проводов/контактов/коннекторов, доступных с двух сторон (ESC может приходить как с уже припаянными коннекторами, так и без).

  • Подача питания: два толстых провода (обычно чёрный и красный) предназначены для подачи питания от распределительной платы/жгута проводов к которым питание приходит непосредственно от основной аккумуляторной батареи дрона.
  • 3 коннектора: С противоположной стороны контроллера доступны три коннектора предназначенные для соединения с тремя пулевидными коннекторами (как правило идут в комплекте с моторами) на бесколлекторном моторе. Применение коннекторов при подключении ESC позволяет при необходимости (в случае сбоя) осуществить быструю смену контроллера без использования паяльника. Бывает, что пулевидные коннекторы идущие с мотором не соответствуют коннекторам на регуляторе, в таком случае просто замените на подходящие. Какой из трёх «плюс», а какой «минус»? Ориентир простой, приходящий плюсовой провод от батареи, переходит в плюсовой на ESC, аналогично и с минусом.
  • 3-контактный R/C servo разъём с тонкими проводами: посредством которых осуществляется обработка сигнала поступающего от приёмника, из которых один провод является сигнальным (передача сигнала газа к ESC или вход), второй «минус» (или земля), и плюсовой провод (не задействуется, если отсутствует встроенный BEC; при встроенном BEC является выходом 5В питания, который в последствии можно использовать для питания бортовой электроники).

Bec

Во времена зарождения авиамоделизма в качестве силовой установки использовался двигатель внутреннего сгорания, а питание бортовой электроники осуществлялось от небольшой батареи. С приходом электрической тяги и регуляторов (ESC), в последние, стали включать так называемую цепь устранения батареи — BEC (на англ. Battery Eliminator Circuit; или преобразователь бортового питания; как правило, обеспечивает дополнительный источник тока напряжением 5В при силе тока 1А, либо выше). Иными словами это преобразователь напряжения используемой в сборке LiPo в напряжение для питания бортовой электроники беспилотника.

Смотрите про коптеры:  Как настроить квадрокоптер: подробная инструкция

При сборке мультиротора необходимо подключить все ESC к контроллеру полёта, но потребуется только один BEC, иначе могут возникнуть проблемы при подаче питания на одни и те же линии. Поскольку обычно нет способа отключить BEC на ESC, лучше всего удалить красный провод ( ) и обмотать его изолентой для всех ESC, кроме одного. Также важно оставить чёрный провод (земля) для общего заземления.

Прошивка

Не все существующие на рынке ESC одинаково хороши для применения в мультироторных сборках. Важно понимать, что до появления многомоторных БЛА, бесколлекторные моторы использовались в первую очередь в качестве силовой установки радиоуправляемых автомобилей, самолётов и вертолётов. Большинство из них не требуют быстрого времени отклика или обновления. ESC с встроенным программным обеспечением SimonK или BLHeli способны очень быстро реагировать на входящие изменения, что в целом предопределяет разницу между стабильным полётом или крашем.

Распределение питания

Поскольку каждый ESC питается от основной батареи, основной разъем АКБ должен быть как-то разделен на четыре ESC. Для этого используется плата распределения питания или жгут распределения питания. Эта плата (или кабель) разделяет положительные и отрицательные клеммы основного аккумулятора на четыре. Важно отметить, что типы разъёмов, используемых на аккумуляторе, ESC и распределительной плате, могут не совпадать, поэтому лучше по возможности выбирать «стандартный» разъём (например, Deans), который используется повсеместно. Многие недорогие платы могут требовать пайки, в данном случае пользователь решает сам какой конкретный разъём ему использовать в сборке. Самый простой распределитель питания может включать в себя два входных клеммных блока, либо пайку всех положительных соединений вместе, а затем всех отрицательных соединений вместе …

Материалы исполнения

Материал(ы), используемые для изготовления несущих винтов (пропеллеров), могут оказывать умеренное влияние на лётные характеристики, но безопасность должна быть главным приоритетом, особенно, если вы новичок и не опытны.

  • Пластмасса (ABS/Нейлон и т.д.) — является самым популярным выбором, когда речь заходит о многомоторных БЛА. Во многом это связано с низкой стоимостью, достойными лётными характеристиками и показательной долговечностью. Как правило в случае краша, по крайней мере, один пропеллер оказывается сломанным, и пока вы осваиваете дрон и учитесь летать, у вас всегда будет много сломанных пропов. Жёсткость и ударопрочность пластикового винта может быть улучшена посредством усиления углеродным волокном (карбон), такой подход макс. результативен и не так дорог по сравнению с винтом полноценно исполненным и карбона.
  • Фиброармированный полимер (углеродное волокно, нейлон усиленный карбоном и т.д.) — является «передовой» технологией во многих отношениях. Детали из углеродного волокна всё ещё не очень просты в изготовлении, и поэтому вы платите за них больше, чем за обычный пластиковый винт с аналогичными параметрами. Пропеллер изготовленный из углеродного волокна сложнее сломать или согнуть, и, следовательно, при краше, он нанесёт больший ущерб всему, с чем соприкоснётся. Одновременно с этим, карбоновые винты, как правило, хорошо сделаны, более жёсткие (обеспечивают минимальные потери в эффективности), редко требуют балансировки и имеют более лёгкий вес по сравнению с любыми другими материалами исполнения. Такие винты рекомендуется рассматривать только после того, как уровень пилотирования пользователя станет комфортным.
  • Дерево — редко используемый материал для производства несущих винтов многороторных БЛА, поскольку для их изготовления требуется механическая обработка, которая в последствии делает деревянные пропеллеры дороже пластиковых. При этом дерево вполне прочное и никогда не гнётся. Отметим, что деревянные пропеллеры всё ещё применяют на радиоуправляемых самолётах.

Пару слов о конструкции

Чаще всего мультикоптер представляет из себя металлическую, или углепластиковую раму с парным количеством моторов (наиболее популярны квадро- и гексакоптеры, с 4 и 6 роторами соответственно). В центре расположена плата управления и батарея, остальные детали крепятся, куда кому вздумается.

Электрические трехфазные бесколлекторные моторы (стандартные для авиамоделистов) на 7000-25000 оборотов в минуту развивают тягу, достаточную для удержания в воздухе всей необходимой для съемок аппаратуры. В зависимости от количества и мощности моторов, эта тяга может быть от сотен грамм до десятков килограмм.

В большинстве случаев используется четное количество роторов для равномерной компенсации вращательного момента: половина пропеллеров крутится в одном направлении, половина — в обратном (для этих же целей у классического вертолета предусмотрен хвостовой винт), хотя есть и трикоптеры.

Таким образом, для наклонов аппарата вправо-влево и вперед-назад (крен и тангаж) достаточно уменьшить скорость вращения моторов с одной стороны, и увеличить — с другой, а если увеличить скорость моторов «через один», вращательный момент одних не будет скомпенсирован другими, и аппарата будет поворачиваться вокруг вертикальной оси вправо-влево (рысканье).

Мультикоптер имеет перед классической моделью вертолета некоторые преимущества:

  • Стартовая цена. Аналогичный по подъемной силе вертолет обходится в два раза дороже.
  • Простота конструкции. Рама собирается из говна и палок подручных материалов, прочность имеет второстепенное значение (некоторые детали традиционного вертолета должны выдерживать огромные нагрузки, чтобы обеспечить возможность резких маневров).
  • Цена техобслуживания. Вертолет с необходимой подъемной силой (здесь и далее я подразумеваю, что мы хотим получить в итоге летательный аппарат, способный поднять, к примеру, среднюю зеркалку весом в полтора-два кг) может иметь только двигатель внутреннего сгорания, огромные лопасти и другие прелести больших моделек, со всеми соответствующими затратами на бензин масло, разбитые лопасти и проч.
  • Эксплуатация. Сюда можно отнести намного большую вибрацию и шум одного двс-мотора, чем шести электрических; большая маневренность мультикоптера, легкое управление с использованием автопилота.
Смотрите про коптеры:  Основы управления радиоуправляемой машиной

Итак, мы загорелись идеей собрать для фотографических целей именно мультикоптер. Нас не устраивают готовые решения (о них позже), мы хотим создать что-то свое, большое, красивое, с соответствующими карточными играми и девицами легкого поведения. За дело!

Подключение

Изначально ESC может сбивать с толку, потому что для его подключения доступно несколько проводов/контактов/коннекторов, доступных с двух сторон (ESC может приходить как с уже припаянными коннекторами, так и без).

  • Подача питания: два толстых провода (обычно чёрный и красный) предназначены для подачи питания от распределительной платы/жгута проводов к которым питание приходит непосредственно от основной аккумуляторной батареи дрона.
  • 3 коннектора: С противоположной стороны контроллера доступны три коннектора предназначенные для соединения с тремя пулевидными коннекторами (как правило идут в комплекте с моторами) на бесколлекторном моторе. Применение коннекторов при подключении ESC позволяет при необходимости (в случае сбоя) осуществить быструю смену контроллера без использования паяльника. Бывает, что пулевидные коннекторы идущие с мотором не соответствуют коннекторам на регуляторе, в таком случае просто замените на подходящие. Какой из трёх «плюс», а какой «минус»? Ориентир простой, приходящий плюсовой провод от батареи, переходит в плюсовой на ESC, аналогично и с минусом.
  • 3-контактный R/C servo разъём с тонкими проводами: посредством которых осуществляется обработка сигнала поступающего от приёмника, из которых один провод является сигнальным (передача сигнала газа к ESC или вход), второй «минус» (или земля), и плюсовой провод (не задействуется, если отсутствует встроенный BEC; при встроенном BEC является выходом 5В питания, который в последствии можно использовать для питания бортовой электроники).

Схема аппарата


Рисуем свои соображения относительно того, из чего должен состоять наш комплекс:

Дрон своими руками: Урок 3. Силовая установка.

Контроллеры моторов (они же регуляторы скорости) — стандартная для авиамоделистов схема, которая подает на двигатели подготовленное 3-фазное питание со сдвигом фаз, зависящим от ШИМ-сигнала, задающего желаемую скорость вращения ротора.

В дальнейшем мы снова воспользуемся опытом зарубежных коллег, которые модифицировали прошивку контроллера (а им оказалась всеми любимая АТмега) одного из регуляторов так, чтобы задавать скорость не ШИМ-сигналом, а байтом, записанным по определенному адресу в шину I2C.

Гирокуб — я так обозвал комплект из трех гироскопов и трех акселерометров, необходимый управляющей плате, чтобы отслеживать положение аппарата в пространстве.

Подвес камеры — еще одна важная для съемки деталь. В полете мультикоптер наклоняется в стороны, поэтому камеру необходимо наклонять в обратном направлении, чтобы относительно снимаемого объекта камера была более-менее в одной плоскости, и кадр не шатало.

Конструкцийподвесасуществуетбольшоеколичество, все они управляются сервомашинками (надежнее было бы повесить настоящий гироскоп, но это непозволительное расточительство драгоценной подъемной силы).

Главная плата (назовем ее автопилотом) — самая сложная часть аппарата. Используя данные, полученные от гироскопов и акселерометров, микроконтроллер вычисляет, на какой угол повернут мультикоптер вокруг каждой из осей, чтобы пересчитать необходимую скорость вращения каждого пропеллера и выровнять аппарат в изначальное положение.

Пульт – по нашему плану это ноутбук, который посылает главной плате сигналы через радиомодем и таким же образом получает данные о состоянии аппарата.

В этот момент нам казалось, что мы справимся со всем тем огромным объемом работ: предстояло разработать софт и хард, протоколы связи и схемы взаимодействия, почти все с нуля. Это было ошибкой, коих мы допустили множество, и будем допускать снова и снова, но мы приобрели опыт, который, быть может, пригодится кому-нибудь из вас. Ну, или хотя бы просто интересно будет почитать 🙂 спойлер

Спасибо всем, кто помог появиться этому посту 😉 Продолжение следует.

Установка

Как и БЛА, несущие винты могут имеют широкий диапазон размеров. Таким образом, в этой отрасли существует целый ряд «стандартных» диаметров вала двигателя. В связи с чем несущие винты часто поставляются с небольшим набором переходных колец (выглядят как шайбы с отверстиями разного диаметра в центре), которые устанавливают в центральное посадочное отверстие пропа, в случае если диаметр отверстия несущего винта оказался больше диаметра вала используемого мотора.

Фиксироваться винт на моторе может исходя из того, какой из способов крепления поддерживает ваш мотор. Если вал мотора не подразумевает никаких вариантов крепежа (резьб. соединение, различные приспособления для крепления и т.д.), в таком случае применяются специальные адаптеры, такие как пропсейверы и цанговые зажимы.

https://www.youtube.com/watch?v=b1IVwGmGs4Y

Бесколлекторные моторы с наружным ротором (типа «Outrunner») как правило, в верхней его части, имеют несколько резьбовых отверстий рассчитанных под установку различных адаптеров и креплений. Не менее популярным вариантом крепления пропеллера на валу БК мотора является самозатягивающая гайка.

Оцените статью
Добавить комментарий

Adblock
detector