Двигатели для квадрокоптеров | Купить электродвигатели для радиоуправляемых коптеров в интернет-магазине RC-TODAY.RU

Двигатели для квадрокоптеров | Купить электродвигатели для радиоуправляемых коптеров в интернет-магазине RC-TODAY.RU Мультикоптеры

Балансировка двигателей квадрокоптера

После того как двигатели выбраны и приобретены, первое, что нужно сделать, это сбалансировать их. Процедура несложна и проводится при помощи пластмассовых грузиков из самозатягивающихся хомутов или кусочков скотча. Это необязательно, но вреда не принесёт и может быть очень полезно,  особенно при использовании размером 2212 или крупнее.

С чего начать поиск подходящих моторов

Вариантов очень много. Чтобы сберечь временя, мы подготовили небольшой список из 5 лучших моторов, на которые следует обратить внимание в первую очередь. Вот наши рекомендации по выбору двигателей для квадрокоптеров: 

  1. Двигатель STAR POWER R2204-2460KV.
  2. Двигатель для мультикоптеров массой  5-10кг модель HL W48-30 420KV
  3. Двигатель для мультироторных систем Т-MOTOR MT3506 650KV
  4. Двигатель с внешним ротором для мини мультикоптеров DYS BE1806 / 2300KV 2-3S
  5. Двигатель SunnySky X2204SII CW KV2300 

Бесколлекторные моторы для квадрокоптера –

Бесколлекторные двигатели для квадрокоптеров

  Бесколлекторные моторы, которые устанавливают на квадрокоптеры, еще называют «бесщеточные». Его подвижным элементом является статор, а щеточный механизм, который постоянно перегревается и выходит из строя, у него отсутствует. Однако, их конструкция намного сложнее, поэтому и стоимость их намного выше.


У двигателей, как у Phantom 3 2312 Motor (CCW) (Part 7) нет специальных, подающих напряжение на обмотку, щеток, приводящих в движение ось. Здесь на корпусе, вращающимся вокруг оси с медной обмоткой, закрепляются магниты, благодаря чему двигатели типа DJI 2212 motor (RED) способны регулировать свою скорость вращения и развивают большую мощность. Но это значительно утяжеляет сам дрон и такие двигатели устанавливаются на большие, профессиональные квадрокоптеры.

Смотрите про коптеры:  Покупайте лучшие дроны в Интернете: найдите свой идеальный вариант!

Преимущества бесколлекторных двинателей

  Управляются эти двигатели с помощью специального блока(ESC электронный регулятор оборотов), который регулирует мощность и частоту вращения. Ресурс такого мотора ограничивается только лишь ресурсом подшипников, которые служат очень долго.

Бесколлекторные моторы имеют много преимуществ:

  • Отличная мощность и высокий КПД (около 93%), как у Team Orion Vortex VST2 Pro 540 Modified 2P5T
  • Износоустойчивость и надежность
  • Защищенность от влаги, а также от пыли и попадания частиц грязи
  • Высокая скорость и длительность работы без перегрева и ремонта
  • Пожаробезопасность
Какой бесколлекторный двигатель выбрать?
Бесколлекторные двигатели легко справляются с нагрузкой, которая неизбежна при установке аккумулятора с большой емкостью, а также камеры с дополнительным оборудованием. Квадрокоптеры, оснащенные таким мотором, способны поднимать серьезные грузы, перемещать их с большой скоростью, без потери мощности.

Однако такие моторы имеют достаточно высокую стоимость и не подходят для новичков-любителей этого спорта. Серьезная цена, а также требования, предъявляемые к технике, оснащенной двигателями, подобными  DJI E 310 2312 960KV (CW CCW) , требуют и серьезного, профессионального подхода, а также наличия опыта управления. Сервисный центр интернет-магазина Quadrone осуществляет ремонт, замену и обслуживание бесколлекторных двигателей в Москве.

Важность понимания того, как летает и работает квадрокоптер

С небольшим опытом управления полетом, квадрокоптер становится практически автоматическим. Вы перемещаете джойстики на пульте радиоуправления, направляющие дрон в любом направлении, в котором вы хотите, чтобы он летел. Нам не нужно думать о том, что делают двигатели или пропеллеры.

Теперь предположим, что мультикоптер полетел неправильно. Может быть, его тянет в каком-то направлении, и он не зависает на одном месте. Хорошее понимание того, как летает и работает квадрокоптер, поможет вам найти проблему с двигателем или пропеллером, особенно если визуальный осмотр не выявил неисправности.

Когда вы понимаете конструкцию пропеллеров (винтов) квадрокоптера и тягу двигателя, у вас появляется возможность внести изменения в свой дрон. Например, снять камеру и установить что-то другое, например датчик времени полета или лидар. Полеты с дополнительным весом влияют на контроль, полет и баланс беспилотника.

Если вы проектируете или создаете свой собственный квадрокоптер, то понимание конструкции двигателя и винта является важной информацией. Вам нужно подобрать правильную конфигурацию двигателя квадрокоптера, соответствующие пропеллеры, электронные схемы управления скоростью, а также IMU и GPS вместе с соответствующим корпусом.

Объяснение направления вращения двигателя и гребного винта Quadcopter

Вес двигателя

Собственный вес электродвигателя — фактор, о котором нередко забывают. Он особенно важен для гоночных дронов и аппаратов для занятий фристайлом.

Поскольку моторы размещены в углах рамы, далеко от центра масс, они оказывают большое влияние на манёвренность квадрокоптера. Тяжёлые двигатели увеличивают момент инерции, что затрудняет изменение угловой скорости. На практике, когда беспилотник начинает делать сальто и бочку, нужно некоторое время, чтобы набрать необходимое угловое ускорение и перейти в нужное положение. Чем тяжелее двигатель, тем больший крутящий момент требуется для разворота.


Двигатель имеет собственный момент инерции. Чем тяжелее мотор, тем больше крутящего момента нужно для вращения его вала. Поэтому требуется больше времени для изменения частоты вращения. Это влияет на отзывчивость двигателя и манёвренность квадрокоптера в целом. Аппарат с более тяжёлыми двигателями требует значительных поправок от PID регулятора.

Вес двигателя имеет гораздо большее значение для тех, кто увлекается акробатикой и гонками, чем для любителей пейзажной съёмки с воздуха.

Дуговые магниты

Использование дуговых или изогнутых магнитов — это метод большего приближения магнитов к статору. Он обеспечивает более непрерывный и меньший воздушный зазор, что улучшает общую эффективность двигателя.

Чтобы зафиксировать внешний колокол двигателя на валу, производители обычно используют один из методов:

  • C-образный зажим;
  • E-образный зажим;
  • обыкновенный шплинт.

Каждый из этих способов имеет свои плюсы и минусы и трудно сказать, какой из них лучше. Считается, что шплинты легче в использовании, так как их легче удалить винт, чем C-образный или E-образный зажим. Но они подвержены риску чрезмерного затягивания или блокировке вала, которые увеличиваю силу трения и препятствует вращению.

Есть данные, что С-образные зажимы иногда выскакивают во время полёта, из-за чего кожух двигателя может просто слететь. Вероятно, такое может случиться, но и шплинты не застрахован от подобной проблемы.

Такие детали конструкции двигателя, как контакты для пайки, встроенный регулятор ESC или специальный охлаждающий кожух-радиатор делают современные силовые агрегаты для квадрокоптеров более мощными и надёжными, но при этом могут увеличить размер и вес.

Значительный рост потребляемой мощности также будет заметен в результате использовании более тяжёлых пропеллеров, повышении общей полётной массы и потребности в более мощных регуляторах ESC.

Как работает квадрокоптер

Как квадрокоптер зависает или летит в любом направлении, поднимается или опускается в одно мгновение, от прикосновений к ручке пульта дистанционного управления. Дроны способны летать автономно через запрограммированное программное обеспечение для навигации по маршрутным точкам и летать в любом направлении от точки к точке. Давайте рассмотрим используемые технологии в мультикоптерах в подробностях.

Направление вращения пропеллеров наряду со скоростью двигателя дрона, что делает возможным его полет и маневренность. Пульт радиоуправления квадрокоптером отправляет информацию контроллеру на беспилотнике, и передает данные двигателям через их электронные схемы управления скоростью (ESC) о тяге, оборотах, и направлении.

Несмотря на то, что современные технологии беспилотных летательных аппаратов и квадрокоптеров являются современными, они все еще используют старые принципы парного полета, гравитации, действия и реакции.

При изготовлении квадрокоптеров, винтов и конструкции двигателя учитываются основные 4 силы, влияющие на весь полет: вес, подъем, тяга и также являются важными факторами. Математика используется для расчета тяги двигателя квадрокоптера, в то время как аэродинамика самолета используется для расчета винта и движения воздуха над, под и вокруг квадрокоптера.

Как читать характеристики двигателя

Первое — стоит определится с размерами рамы и аккумулятором. Решить — будете ли вы использовать 4S для полетов.

Если вы решили, что вам нужен скоростной коптер, то берите Eachine BG2204 2300KV, Emax RS2205-2300 или DYS SE2205 2300KV, последние два дают еще и повышенную мощность. 

Для малых рам и 4S аккумуляторов — KingKong 1806V2 2280.

Если скорость не актуальна и будет использоваться только 3S, то рекомендую брать Eachine для обоих случаев, качество моторов мне нравится.

Константин, Обзор квадрокоптеров.

Выбирая двигатель для квадрокоптера, стоит обратить внимание на его характеристики. А именно:

  • потребляемая мощность (Вт) – чем выше ее показатель, тем чаще нужно будет заряжать аккумулятор, а значит дрон летать долго не будет;
  • вес – обычно, чем больше вес мотора, тем выше его мощность, но здесь нужно учитывать и массу самого беспилотника, поскольку он должен быть способен поднять определенный вес;
  • КПД – понятие, которое зависит от многих составляющих (батареи, пропеллера, контроллера и проводов), для бесколлеторных моторов показатель энергоэффективности должен составлять 90 %, для двигателей коллекторного типа – 70 %;
  • температура нагрева в рабочем состоянии – напрямую зависит от предыдущего показателя, чем больше нагревается, тем больше энергии расходуется впустую;
  • балансировка и вибрация – дешевые модели, оснащенные наименее мощным мотором, подвержены повышенной вибрации, что может сказаться на работе дрона (в этом случае он быстрее изнашивается);
  • подъемная сила – вес, который может поднять двигатель.

У электрических квадрокоптеров есть существенный недостаток – малое время полета. Даже модели профессионального уровня способны пробыть в воздухе лишь 30-40 минут, и это считается очень хорошим показателем. Дооснащение запасными (или более емкими) аккумуляторами приводит к заметному увеличению массы летательного аппарата и существенно уменьшает вес полезной нагрузки, которую он может нести.

Производители стараются максимально уменьшить вес дронов беспилотников, используя облегченные материалы, но пока не существует технологий, способных существенно облегчить массу батарей. И чем больше ее емкость, тем значительнее становится вес.

Нельзя не упомянуть и про еще один недостаток – стоимость аккумуляторов. Она достаточно высока, при этом эксплуатационные качества батареи со временем ухудшаются. Универсальных аккумуляторов, подходящих ко всем популярным моделям коптеров не существует.

Квадрокоптеры мало пригодны для использования при минусовых температурах. Зимой батареи разряжаются особенно быстро и продолжительность полета заметно уменьшается.

Необходимо учитывать и время, которое придется потратить на заряд аккумулятора. Одно дело, когда необходимо совершить 20-30 минутный полет, и совсем другое – когда речь идет о многочасовой работе. Запасных батарей попросту не хватит, и придется делать перерывы на зарядку. К тому же, в удаленных районах электросети могут отсутствовать в принципе.

· Стоят дорого

· Плохо переносят минусовые температуры

· Не являются универсальными

· Требуют длительного времени на зарядку

· Обладают значительным весом и размерами

Бензиновый квадрокоптер лишен значительной части минусов, присущих электрическим БПЛА. Сам по себе ДВС стоит сравнительно недорого, особенно если речь идет о профессиональной технике. Он сложнее в обслуживании по сравнению с электродвигателями (которым обслуживание в большинстве случаев не нужно), но это не означает, что пилоту необходимо проходить курсы механиков. В конце концов, ведь никого не пугают бензиновые газонокосилки.

Работающие на бензине дроны можно быстро заправить и вновь отправлять в полет. Нет необходимости тратить немалые суммы на запасные аккумуляторы и нет необходимости постоянно их заряжать.

Беспилотник можно использовать при минусовых температурах, при этом заметного ухудшения его эксплуатационных характеристик не происходит. Бензин не замерзает зимой, но придется прогревать двигатель перед первым запуском. Надежность ДВС высока, и при должном обслуживании его хватит на многие и многие километры полетов.

Двигатель внутреннего сгорания заметно больше электродвигателя, то есть поместить его в небольшой коптер не получится. Помимо ДВС, на раму беспилотника необходимо установить топливную систему, систему зажигания, бензобак. Смысл такого усложнения конструкции заключается в том, что ДВС с бензобаком оказывается сравнимым по стоимости по сравнению с аккумуляторами высокой емкости.

Мощность и дальнобойность бензиновых квадрокоптеров позволяют использовать их для транспортировки тяжелых грузов на значительные расстояния. Собственно, именно доставка грузов является одним из основных предназначений таких коптеров.

Но есть и недостатки. Как уже было сказано, ДВС требует хотя бы элементарного обслуживания. Конструкция беспилотника становится более сложной, а размеры двигателя не позволяют установить его на небольшую раму. Шум, издаваемый бензиновым мотором, оказывается громче, по сравнению с электродвигателями.

Так как в качестве топлива используется бензин, то возникают повышенные требования к технике безопасности. Недопустимо запускать бензиновый коптер в местах массового скопления людей. При падении аппарат может загореться и даже взорваться.

КПД бензинового мотора заметно ниже по сравнению с КПД электродвигателя, а выхлопные газы не позволяют использовать его внутри помещений (например, складов).

· Только с ДВС

· Гибриды (то есть ДВС и электродвигатель)

Второй вариант является более сложным в изготовлении, однако удобнее в управлении. Возможно, именно гибриды в итоге получат большее распространение.

Краткий гайд по квадрокоптерам для fpv. часть третья – про двигатели и регуляторы.

Первая часть, в которой я рассказал о том, что такое FPV-полёты и что для них нужно, а так же посоветовал пару коптеров для новичков.

Вторая часть – про аккумуляторы и аппаратуру радиоуправления.

В конце второй части я обещал, что в следующей будут видосики с полётов, но майский снег и ветер внесли свои коррективы. Поэтому сегодня снова теория об устройстве коптера =( Впрочем, эта часть будет полезна не только подписавшимся на меня уже 40 людям (спасибо, что мотивируете меня писать дальше), но и любому, кто так или иначе покупает себе какую-нибудь летающую игрушку. И вот с истории про летающие игрушки я сегодня и начну.

Примерно с полгодика назад мне от знакомой досталась мечта любого мальчика до 40 лет – большой и яркий радиоуправляемый вертолётик. Вот такой:

Достался он мне с диагнозом – включается, сервы шуршат, но винт не крутится. Ну это не мудрено – ответил я подруге – вертолётик-то у вас коллекторный! Готовьтесь менять движки.

Вертолётик по итогу летает после замены двигателя (видео, каюсь, я подзатянул), но головной боли с коллекторными движками хватает мне и по сей день. Так что же это за зверь такой?

С коллекторными двигателями сталкивались, я уверен, практически все из вас. Любые китайские движущиеся игрушки, радиоуправляемые вертолётики и машинки, зубные щётки… Коллекторные движки весьма дёшевы (до 300 рублей), а потому и ставятся дядюшкой Ляо на 90% коптеров в ценовом сегменте до 5000 рублей. Так что с большой долей вероятности первый бюджетный квадрик, который Вы себе возьмёте для обучения, будет именно на них.

Если кто ещё не видел – вот фотка коллекторных движков:

А вот схема коллекторного мотора (в реале ротор имеет три обмотки):

Тот самый коллекторно-щёточный узел, давший название этому типу двигателей, в итоге и стал ахиллесовой пятой – соприкасающиеся с валом угольные щётки постепенно истираются, и после некоторого времени активной эксплуатации или пары-тройки серьёзных ударов контакт теряется, изнутри движка весело сыпется угольная пыль, а Вы в очередной раз идёте на почту за новым движком с Али.

Так что единственные коллекторные коптеры, пригодные для занятий “серьёзным” FPV – это крохотные умещающиеся на ладони тинивупы – самое то для полётов по квартире или в каком-нибудь другом помещении. Все же остальные коллекторники – по сути своей игрушки, и серьёзных результатов с ними Вы вряд ли добьётесь.

Думаете – “Фантом”? Нет, очередной коллекторник от Симы, пусть и выглядящий серьёзно.

И в этой весьма досадной ситуации к нам на выручку приходит альфа и омега современного дроностроения – бесколлекторный движок:

Скажете – те же обмотки, те же магниты, в чём разница-то? А разница в том, что подвижных электрических соединений на бесколлекторнике нет! Истираться нечему! Центральная часть с обмотками является статором (то есть никуда не вращается во время работы), а ротором – вращающейся частью – является крышка – колокол с закреплёнными на ней магнитами.

Мало того – бесколлекторный двигатель можно закрепить практически где угодно, на любой поверхности и прикрепить непосредственно на ось движка пропеллер, без необходимости городить сложный редукторный узел, как это делается на больших коллекторных коптерах.

Так что на всех гоночных (да и любых профессиональных) коптерах устанавливаются именно бесколлекторные моторы. Единственным недостатком по сути является цена – где-то от 1000 за нормальный б/к движок.

С теми, какие у нас существуют типы двигателей, мы разобрались. Теперь – про то, как они управляются. А для управления что коллекторным, что бесколлекторным движком используется регулятор оборотов, он же ESC. Дальше я рассмотрю бесколлекторный регулятор, ибо мы говорим всё-таки о дронах =)

Представляет он собой платку, с одной стороны (на первом фото слева) которой выведены провода к и – аккумулятора, а так же пучок проводов на приёмник/полётный контроллер (gnd, , сигнал). С другой стороны (на первом фото справа) выведены три провода для подключения трёх проводов двигателя.

Самолётный регуль…

И коптерный.

У регулятора есть пара важных характеристик, пробежимся кратко по ним:

1) Максимальный вольтаж аккумулятора (в банках). На первом фото – от 2S до 3S, на втором от 2S до 6S. О том, что это – смотрите предыдущую часть. Поставите больше, чем надо – сгорит.

2) Максимальный ток, который способен выдержать регуль. На первом фото – до 10 ампер, на втором от до 45 ампер.

На сегодня пока всё. В следующей части расскажу про мозги коптера и, возможно, режимы полёта. По традиции – ответы на все вопросы в комментах =)

Крутящий момент

Крутящий момент определяет, как быстро двигатель может увеличить скорость вращения. Это влияет на отзывчивость, точность управления и поведение квадрокоптера в полете. Мотор с высоким крутящим моментом лучше реагирует на команды, потому что изменение числа оборотов двигателя происходит быстрее. Задержи управления будут очень малы или совсем незаметны.


Высокий крутящий момент позволяет использовать более мощные пропеллеры при одинаковой силе тока. Если вы установите слишком мощные винты на двигатели с малым крутящим моментом, они просто не смогут привести пропеллеры в движение или не наберут достаточных оборотов. Это неизбежно приведёт к снижению тяги и потере мощности.

Но у двигателей с высоким крутящим моментом есть и существенный недостаток. Это колебания в полете, которые бывает трудно устранить настройками. Дело в том, что такие моторы очень быстро реагируют на повышение тока в системе ESC и меняют скорость вращения. Это часто приводит к ошибкам системы управления и может вызывать колебания в полете, особенно по оси рысканья.

Направление двигателя для рыскания

На квадрокоптере, таком как DJI Mavic Pro или последняя версия Mavic 2 Pro, рыскание управляется правой ручкой управления на пульте дистанционного радиоуправления. Перемещение джойстика влево или вправо приведет к повороту квадрокоптера влево или вправо.

Движение на пульте передают сигналы на полетный контроллер, который отправляет данные на регуляторы скорости квадрокоптера, управляющие конфигурацией и скоростью каждого двигателя.

Чтобы увидеть, как это на самом деле работает, взгляните на диаграмму конфигурации пропеллеров выше. На схеме изображен квадрокоптер DJI Phantom 3, вид сверху с роторами, обозначенными от 1 до 4.На приведенной схеме, вы можете видеть конфигурацию двигателя квадрокоптера:

Угловой момент является вращательным эквивалентом линейного импульса и рассчитывается путем умножения угловой скорости на момент инерции. Какой момент инерции? Это похоже на массу, но только он имеет дело с вращением. Угловой момент зависит от того, как быстро вращаются роторы.

Концептуально момент инерции можно рассматривать как представление сопротивления объекта изменению угловой скорости.

Если на двигателях квадрокоптера крутящий момент отсутствует, то общий угловой момент должен оставаться постоянным, равным нулю. Чтобы понять угловое движение вышеуказанного квадрокоптера, представьте, что 2-й и 4-й ротор, имеют положительный угловой момент, а 1-й и 3-й имеют отрицательный угловой момент. Назначим каждому двигателю значение -4, 4, -4, 4, что в сумме равно нулю.

Чтобы повернуть дрон вправо, нужно уменьшить угловую скорость двигателя 1, чтобы иметь угловой момент -2 вместо -4. Если бы ничего не случилось, общий момент импульса квадрокоптера теперь был бы 2. Так вот, этого не может быть. Дрон теперь будет вращаться по часовой стрелке, так что его корпус имеет момент импульса -2.

Уменьшение вращения ротора 1 действительно привело к вращению дрона, но также вызывает проблему. Это также уменьшило тягу от двигателя 1. Теперь направленная вверх сила не равна силе гравитации, и квадрокоптер опускается.

Кроме того, тяга двигателя квадрокоптера не одинакова, поэтому квадрокоптер становится неуравновешенным. Квадрокоптер наклонится вниз в направлении двигателя 1.

Чтобы вращать дрон без создания вышеуказанных дисбалансов, необходимо уменьшить вращение двигателей 1 и 3 с увеличением вращения вращающихся роторов 2 и 4.

Угловой момент вращения роторов по-прежнему не равен нулю, поэтому корпус дрона должен вращаться. Однако общая сила остается равной силе гравитации, и дрон продолжает зависать. Поскольку нижние упорные роторы расположены по диагонали друг от друга, дрон может оставаться в равновесии.

Направление пропеллеров – рыскание, тангаж, крен

Направление пропеллеров для рыскания, тангажа и крена

Прежде чем углубиться в настройку двигателя и пропеллеров квадрокоптера, давайте немного объясним терминологию, используемую, когда он летит вперед, назад, вбок или вращается при зависании.

Рыскание (Yaw)— это вращение или поворот квадрокоптера вправо или влево. Это основное движение для вращения мультикоптера. На большинстве дронов это достигается с помощью левой ручки газа влево или вправо.

Тангаж (Pitch)— это движение квадрокоптера вперед или назад. Подача вперед обычно достигается нажатием ручки газа вперед, что заставляет квадрокоптер наклоняться и двигаться вперед от вас. Шаг назад достигается перемещением ручки газа назад.

Крен (Roll)- Большинство людей путают крен с рысканием. Крен заставляет квадрокоптер лететь вбок, влево или вправо. Он управляется правой ручкой газа, заставляя его летать слева направо.

Большинство высокотехнологичных дронов, таких как квадрокоптер Yuneec Q500 4k, позволяют управлять им двумя различными способами. Вы можете летать на дроне, как будто вы пилот и на самом деле в квадрокоптере. Вы управляете ручками по-разному относительно крена, в зависимости от того, приближается ли дрон к вам или улетает от вас.

Вот короткое видео, которое очень просто показывает вам, каковы движения крена, тангажа и рыскания.

Направление пропеллеров для вертикального подъем

Вертикальный подъем зависит от направления вращения пропеллеров. Для того чтобы дрон поднялся в воздух, необходимо создать подъемную силу, равной силе гравитации или превышающей ее. Это основная идея взлета самолетов, которая сводится к контролю восходящей и нисходящей силы.

Квадрокоптеры используют конструкцию двигателя и направление вращения винта для создания требуемой тяги, чтобы управлять силой тяжести, воздействующей на летательный аппарат.

Вращение винтов приводит к вытеснению воздуха. Все силы приходят парами (Третий Закон Ньютона), что означает, для каждой силы действия существует равная (по размеру) и противоположная (по направлению) сила противодействия. Поэтому, когда ротор толкает воздух вниз, воздух толкает ротор вверх. Чем быстрее вращаются роторы, тем больше подъемная сила и наоборот.

Дрон может делать три вещи в вертикальной плоскости: зависать, подниматься или опускаться.

Зависание на месте – для зависания, тяга четырех роторов толкает дрон вверх и должна быть точно равна силе гравитации, притягивающей его вниз.

Подъем вверх – достигается путем увеличения тяги (скорости) четырех роторов квадрокоптера так, чтобы сила, направленная вверх, была больше веса и силы тяжести.

Вертикальный спуск или падение вниз – требует выполнения полной противоположности подъему. Уменьшается тяга, чтобы сила была направлена вниз.

Направление пропеллеров квадрокоптера для тангажа и крена

Поскольку большинство квадрокоптеров симметричны (например, DJI Phantom 4 Pro v2, Autel X-Star и Holy Stone HS 100 Drone), нет никакой разницы между движением вперед или назад. То же самое относится и к движению из стороны в сторону. Как лететь вперед также объясняет, как летать назад или вбок.

Чтобы лететь вперед, необходимо увеличить число оборотов двигателя квадрокоптера (скорость вращения) роторов 3 и 4 (задние двигатели) и уменьшить частоту вращения роторов 1 и 2 (передние двигатели). Общая сила тяги останется равной весу, поэтому дрон останется на том же вертикальном уровне.

Кроме того, поскольку один из задних роторов вращается против часовой стрелки, а другой по часовой стрелке, увеличенное вращение этих двигателей будет по-прежнему создавать нулевой угловой момент. То же самое относится и к передним роторам, поэтому дрон не вращается.

Большая сила в задней части дрона означает, что он наклонится вперед. Теперь небольшое увеличение тяги для всех роторов приведет к созданию силы тяги, которая уравновешивает вес вместе с движением вперед.

Размеры рамы, пропеллеров и двигателей

Размер бесколлекторных двигателей, применяемых в квадрокоптерах и радиоуправляемых моделях, обычно обозначается 4-значным числом вида AABB. Первые две цифры AA — это ширина (диаметр) статора, а две последующие BB — его высота, приведённые в миллиметрах.

Как устроен типичный статор бесщеточного электромотора? Он представляет собой находящийся внутри двигателя неподвижный пакет, изготовленный из множества слоёв тонких металлических пластин, ламинированных ещё более тонкими слоями изоляционного материала. Вокруг статора расположены обмотки из медного провода, по которым проходит электричество. Такая сложная многослойная конструкция необходима для того, чтобы в статоре не возникали токи Фуко, приводящие к чрезмерному нагреву.

Размер пропеллера, совместимого с конкретным двигателем, определяет диаметр его вращающегося вала. Моторы для 4″, 5″ и 6″ лопастей обычно комплектуются валом с резьбой M5. Большинство современных электромоторов являются outrunner и сконструированы так, что их вал запрессован во внешний колокол двигателя с постоянными магнитами, вращающийся вокруг неподвижного статора. Более старые модели могут иметь дополнительный адаптер для установки пропеллера.

В большинстве случаев, зная размер рамы квадрокоптера, мы можем оценить, двигатель какого размера нужно использовать. Дело в том, что рама ограничивает допустимые диаметры пропеллеров, для каждого  каждого из которых нужно другое число оборотов, создающих эффективную тягу.

Здесь большую роль играет величина kV выбранного электромотора. Необходимо убедиться в том, что достаточно крутящего момента, чтобы вращать пропеллер. Это напрямую зависит от размеров статора. Точные математические формулы, используемые для определения kV и геометрии статора, довольно сложны. Но для большинства пилотов совершенно нет необходимости беспокоиться об этом, чтобы применять расчёты на практике.

Чтобы упростить методику выбора, можно оценить необходимую тягу и убедиться, что текущая нагрузка не превышает допустимый уровень безопасности. Для этой цели можно воспользоваться несложной таблицей. В ней приведены значения для стандартных 4S LiPo батарей. Допустимо использовать более низкие или более высокие значения kV, но придерживаться при этом разумных ограничений.

Размер рамыПропеллерыРазмер двигателейЗначение KV 
150 мм и менее 3” 1105-1305 и меньше 3000 kV и более
180 мм 4” 1806 2600 – 3000 kV
210 мм 5” 2204-2208, 2306 2300 – 2600 kV
250 мм 6” 2204-2208, 2306 2000 – 2300 kV
350 мм 7” 2208 1600 kV
450 мм и более 8”,9”,10” и более 2212 и более 1000 kV и менее

Разновидности беспилотников

Такое понятие как «беспилотники» является довольно обширным. Под этим термином подразумевают не только квадрокоптеры, но еще и некоторые модели самолетов и вертолетов на радиоуправлении. Это понятие можно еще заменить словом «мультикоптеры» к которым относятся все устройства, оснащенные как минимум тремя винтами.

Виды беспилотников:

  • Трикоптеры. Это летающие конструкции, где на подвижной платформе находятся три несущих пропеллера. Поворачивать дрон можно, меняя угол платформы. Этот вариант достаточно сложный для новичков в управлении, но отличается быстротой и маневренностью.
  • Квадрокоптеры. Наиболее распространенный вид дронов, который состоит из 4 движков и такого же количества пропеллеров. Они легки в управлении и могут поднимать разные грузы, если оснащены навесным дополнением. Это наиболее оптимальный вариант для новичков. Но чтобы получить летательный аппарат с хорошими характеристиками, важно обратить на то, сколько стоит квадрокоптер. Цены варьируются от 2 до 70 тыс. руб. в зависимости от двигателей, качества сборки, а также наличия дополнительных функций.
  • Гексакоптеры. В конструкции содержится 6 моторов и 6 пропеллеров. Это оптимальный вариант для фото- и видеосъемки, поскольку конструкция сохраняет стабильность в воздухе даже при ветреной погоде. К тому же данный вид оснащен увеличенной грузоподъемностью.
  • Октокоптеры. Данный вид, оснащенный сразу 8 винтами, встречается достаточно редко. Вариант относится больше к профессиональным моделям. Отличается конструкция надежностью, способностью поднимать большие грузы и может работать вне зависимости от погодных условий.

Соотношение тяги и веса беспилотника

Основное правило заключается в том, что выбранные для квадрокоптера двигатели должны обеспечивать вдвое большую тягу, чем собственный вес аппарата. Это необходимый минимум мощности, без которого невозможно обеспечить стабильность полёта и контролировать зависание. Если тяга двигателей меньше этого предела, аппарат не сможет правильно выполнять команды пилота или даже не взлетит вовсе.

Например, если вы хотите построить квадрокоптер весом 1 кг, общая тяга, создаваемая его двигателями при полной мощности, должна составлять, по крайней мере, 2 кг или 500 грамм на каждый мотор. Но в реальности, для нормального полёта неплохо иметь ещё больше тяги.

Для того чтобы летать быстрее, особенно для гоночных дронов, планируйте коэффициент тяги выше стандартного. Довольно часто при создании мини квадрокоптера в проект закладывается соотношения 8 к 1 или даже 10 к 1. Это добавит динамики полёту, ваш аппарат станет более манёвренным и будет разгоняться быстрее.


Даже если вы планируете использовать квадрокоптер для аэрофотосъёмки и летать медленно, можно рекомендовать соотношение тяги к массе от 3 к 1 до 4 к 1. Это не только даст дополнительный запас манёвренности и улучшит управление, но и добавит запас грузоподъёмности. Полезной нагрузкой может стать более тяжёлая камера или дополнительные батареи для увеличения времени полёта. Но если вы хотите участвовать в гонках, не следует ограничивать тягу вообще. Летайте настолько быстро, насколько это возможно.

Центральный полетный контроллер

Центральный полетный контроллер квадрокоптера

Теперь центральный полетный контроллер также получает информацию от IMU, гироскопа, модулей GPS и датчиков обнаружения препятствий, если они установлены на квадрокоптере. Он выполняет вычислительные расчеты с использованием запрограммированных параметров полета и алгоритмов, а затем отправляет эти данные в электронные контроллеры скорости.

Фактически, большинство полетных контроллеров включают в себя IMU, GPS, гироскоп и множество других функций для контроля полета и стабильности квадрокоптера. Довольно часто они имеют второй резервный инерциальный измерительный модуль и другие функций безопасности, такие как возврат на точку взлета.

Примером полетного контроллера послужит новый DJI N3 Flight Controller. Он имеет множество функций и может работать с различными двигателями.

Оцените статью
Радиокоптер.ру
Добавить комментарий