Какие бывают полетные контроллеры?
Ниже рассмотрим вопрос — какие бывают полетные контроллеры, а точнее, для каких целей.
Обычно имеют минимум расширенных функций, так как всякие компасы и барометры просто не используются при гонках.
На нем присутствуют все стандартные датчики – гироскоп и акселерометр, а в расширенной версии DELUXE также есть барометр и компас.
Гироскоп и акселерометр определяют текущее расположение дрона в пространстве. Барометр определяет высоту по давлению (чтобы удерживать высоту, например), компас для удержания направления полета.
KISS – прошивать своей прошивкой нельзя. Имеет графический интерфейс с минимумом настроек.
LUX – такой же гибкий, как Naze32, но все же уступает ему. Прошивать можно.
Самым популярным в этом сегменте коптеров является DJI NAZA-M V2: тот самый, что стоит в Фантомах. Идеальный контроллер для фото- и видеосъемки с качественной стабилизацией. На нем спокойно сможет летать новичок, который до этого ни разу не брал пульт в руки. В настройки полета лезть не требуется, все уже настроено, нужно будет просто откалибровать. Даже без навыков у новичка-пилота получится отличный кадр.
Поддерживает весь набор датчиков (GPS, телеметрию, OSD и т.д.)
ArduPilot AMP поддерживает GPS и автономный полет по заданным координатам. Тоже достаточно популярный контроллер, но стоит дороже обычных из-за наличия более важных датчиков.
Vector Flight Controller- профессиональный полетный контроллер с встроенной системой Eagle Tree.
Новичок тоже сможет на таком летать. Эти контроллеры стоят дорого, а вес и размер стремятся к идеалу для аэросъемки.
3DR Pixhawk — самый популярный контроллер для автономных полетов. На его борту есть резервная система, а также он поддерживает все известные датчики для дронов.
MultiWii Pro — дешевый и доступный, позволяет отлично стабилизировать коптер, также на нем есть барометр, магнитометр и GPS.
Теперь, после краткого обзора типов полетных контроллеров, перейдем к полному описанию.
Прошивки для ПК
Полетные контроллеры отличаются не только по типу компонентов, из которых они состоят, но и по прошивкам, на которых они работают, то есть программным обеспечением, на котором работает полетный контроллер.
Что из себя представляет программное обеспечение полетного контроллера — прошивка? Это набор правил и алгоритмов, которые обрабатывает процессор.
А теперь ответ на вопрос, как прошить полетный контроллер? Конкретно для каждой прошивки разработан свой конфигуратор — это специальная программа, которая загружает в полетный контроллер программное обеспечение, а зачем конфигуратор работает в роли графического интерфейса прошивки — чтобы вам было наглядно и удобно настраивать свой квадрокоптер.
Помимо различий в железе, имеются различия и в прошивках, а также в программах для компьютера.
Вот список прошивок (и их описание) для миникоптеров. Если вы совсем в этом не разбираетесь, то мой вам совет, используйте Betaflight, Raceflight или KISS. У них отличные летные характеристики.
Современные прошивки для ПК можно настраивать используя специальные программы, установленные на компьютер или смартфон; или даже прямо с пульта управления.
«Тюнинг» — этот термин мы используем, когда меняем ПИД коэффициенты, рейты и некоторые другие настройки. При помощи тюнинга мы можем настроить коптер «под себя».
ПО для компьютеров имеет графический интерфейс, а набор доступных настроек отличается в зависимости от прошивки, так что есть некоторый входной уровень знаний при их использовании.
После того, как вы выберите прошивку ищите совместимый с ней полетный контроллер.
Процессор полетного контроллера
В настоящее время есть 4 основных типа процессоров: F1, F3, F4 и F7. Мы рекомендуем брать F3 или F4, т.к. прошивки уже уперлись в возможности F1 и дальше его нормально не поддерживают, а F7 — довольно новый, и требуется время для полной адаптации прошивок.
F1 | F3 | F4 | F7 |
72 МГц | 72 МГц | 168 МГц | 216 МГц |
От процессора будет зависеть то, насколько быстро будут обрабатываться поступающие к нему данные. Процессоры делятся по поколениям: F1, F3, F4, F6. Вот такие странные поколения, где пропущены 2-е и 6-е поколения. Отличаются они частотой работы и архитектурой:
- F1 — 72MHz;
- F3 — 72MHz;
- F4 — 168MHz;
- F7 — 216MHz.
Сейчас все новые полетные контроллеры поставляются с процессором 7-го поколения, так как обрабатывать фильтры и PID становится все труднее, прогресс шагает километровыми шагами в этой сфере. Но у многих пилотов ПК на процессорах 3-го поколения, так как F3 был самым (да и остается) массовым поколением со стабильной работой.
UART (последовательные порты)
UART расшифровывается как Universal Asynchronous Receiver/Transmitter, что означает асинхронный последовательный порт.
UART — это, как правило, аппаратный последовательный интерфейс, который позволит вам подключить разные внешние устройства к полетному контроллеру. Например, приемник, телеметрию, транспондер для гонок, управление видеопередатчиком и т.д.
У каждого последовательного порта два контакта: TX — для передачи, RX — для приема.
Пример: на полетнике есть UART3 и UART6. Вы можете назначить им задачи на вкладке Ports в Betaflight конфигураторе.
Возможно, вам потребуются (а может и нет) дополнительные последовательные порты, чем больше свободных есть, тем проще будет в будущем.
Количество портов зависит от дизайна платы и используемого процессора. Например, на ПК с F1 обычно только 2 порта, у F3 и F4 может быть от 3 до 5, а у F7 — семь или даже больше.
F1 | F3 | F4 | F7 |
2 порта | 3-5 портов | 3-6 портов | 7 и более |
Процессоры F3 и F7 могут инвертировать сигнал встроенным инвертором, а F1 и F4 — нет.
Сигналы Frsky SBUS и SmartPort являются инвертированными, поэтому владельцам ПК на F3 и F7 повезло, такие данные понимаются без проблем (F3 и F7 — более новые серии процессоров, подробнее тут).
Однако, более старые процессоры, типа F1 и F4 требуют наличия внешнего инвертора сигнала, который и подключается к соответствующему последовательному порту. Для удобства пользователей некоторые ПК на F4 уже имеют схемы для инверсии сигналов SBUS и SmartPort, так что приемник подключается напрямую к ПК.
Если портов не хватает, можно использовать программную эмуляцию (soft serial) чтобы создать ещё больше портов. К сожалению, эмулируемые порты работают медленнее аппаратных (нельзя выставить большую скорость) и не подходят для важных задач, где требуется быстрая реакция, например не подойдут для работы с приемниками. Ну и, конечно, программная эмуляция требует довольно много ресурсов процессора.
Аббревиатура UART с английского расшифровывается как (Universal Asynchronous Receiver/Transmitter) — универсальный асинхронный приемник/передатчик.
К порту UART подключаются различные периферийные устройства, такие как, приемник, различная телеметрия и так далее. У порта есть два контакта для обмена данными — прием и передача.
UART портов много не бывает — чем больше, тем более гибко можно будет настраивать ваш квадрокоптер, а также они будут дублировать друг друг в случае поломки.
Но само количество портов зависит от размеров платы полетного контроллера и от того, как расположены на ней компоненты, а также от типа процессора, который использует ПК. 3-е и 4-е поколение полетных контроллеров (F3-F4) имеют от 3 до 5 UART, а 7-е поколение — 7 и более. Оно и понятно, слабый процессор не сможет физически обрабатывать столько периферии.
F1 | F3 | F4 | F7 |
2 UART | 3-5 UART | 3-6 UART | 7 UART |
Инвентированный сигнал поддерживают полетные контроллеры 3-го и 7-го поколения, а вот 1-е и 4-е поколения не могут.
Передатчики FrSky с протоколом работы SBUS и SmartPort на выходе инвертируют свой сигнал, и их могут обработать только процессоры нового поколения, такие установлены на 7-м и 3-м поколении (F3 и F7), так как у них уже есть встроенный инвертор.
А вот для устаревших поколений (F1 и F4) нужно перед портом UART устанавливать инвертор, который будет обрабатывать и преобразовывать сигнал и передавать его уже в UART. Хотя в некоторых полетных контроллерах F4 производители сразу устанавливают инверторы для SBUS и SmartPort, пилоту можно сразу подключать приемник к ПК.
Если у вас закончились UART порты, то можно воспользоваться функцией в Betaflight «soft-serial», благодаря которой можно создавать виртуальные UART. С помощью ПО Betaflight создается эмуляция этого порта, как будто он есть физически, но на самом деле его нет. Также стоит отметить, что такой порт будет работать значительно медленнее, чем физический и он не подойдет для подключения приемника, например, так как такое замедление критично. Процессор тоже будет работать с повышенной нагрузкой.
Гироскопы (Gyro), инерциальная навигация (IMU)
Цель датчиков на ПК определить ориентацию коптера и его движения. Микросхема с датчиками (IMU) содержит как гироскопы, так и акселерометры, но так как большинство FPV пилотов используют Acro Mode, то акселерометры обычно отключаются. Т.е. под IMU обычно подразумеваются только гироскопы (gyro).
IMU | Способ подключения, шины | Макс. частота сэмплирования |
MPU6000 | SPI, i2c | 8K |
MPU6050 | i2c | 4K |
MPU6500 | SPI, i2c | 32K |
MPU9150* | i2c | 4K |
MPU9250* | SPI, i2c | 32K |
ICM20602 | SPI, i2c | 32K |
ICM20608 | SPI, i2c | 32K |
ICM20689 | SPI, i2c | 32K |
* MPU9150 — это MPU6050 со встроенным магнитометром AK8975, а MPU9250 — это MPU6500 с тем же магнитометром.
Выяснить тип можно взглянув на маркировку микросхемы, вот для примера популярный вариант Invensense MPU-6000.
У IMU есть две основные характеристики: максимальная частота семплирования и насколько полученные данные будут зашумлены (механическими вибрациями и электрическими помехами).
В настоящее время очень часто используют микросхему MPU6000, которая поддерживает частоту опроса до 8k, и обладает (неоднократно проверено) хорошей устойчивостью к разного рода шумам и помехам. Главное стараться избегать MPU6500 и MPU9250, хотя у них больше рабочая частота, но и уровень шумов тоже значительно выше.
Скорость работы гироскопов — это палка о двух концах: если питание чистое, и шумов нет, тогда серия ICM на 32k будет работать лучше, чем MPU6000. Однако, если регуляторы и моторы генерят довольно много помех, а коптер вибрирует, тогда ICM хуже, чем MPU6000.
Например, ICM20602 стоит на Raceflight Revolt V2, а ICM20689 на Kakute F4, оба работают на частоте 32k. Однако, в обзорах часто упоминают, что эти гиры более чувствительны к шумам, чем MPU6000, поэтому вышеупомянутые ПК лучше крепить с демпферами (антивибрационное крепление) и использовать конденсаторы для фильтрации помех по питанию, это поможет снизить шум.
В последнее время появляется всё больше и больше ПК с гироскопами на отдельной плате с антивибрационной развязкой (кусок поролона, чтобы снизить вибрации от моторов).
i2c или SPI?
i2c и SPI — это названия шин для подключения гироскопов к процессору. Выбранная шина может ограничить частоты опроса гироскопов и ограничит looptime.
Лучше всего использовать SPI, т.к. она позволяет работать с бОльшими частотами, чем i2c, у которой лимит в 4k.
Гироскоп и акселерометр — очень важные датчики, они определяют положение квадрокоптера в пространстве, а также движется ли он, посылают эти данные процессору, а тот уже решает, какому двигателю поддать газа, а какому наоборот, снизить обороты.
Акселерометр выполняет роль стабилизатора в пространстве, есть даже такой режим полета — «Режим стабилизации», при котором квадрокоптер невозможно будет перевернуть в воздухе и он всегда будет держаться параллельно земле (если просто отпустить стики на пульте). Опытные пилоты почти всегда летают в режиме АКРО, поэтому они отключают акселерометр или используют его крайне редко.
Гироскоп же выполняет роль определения положения квадрокоптера в пространстве.
Гироскоп | Протокол коммуникации (BUS) | Макс. частота работы гироскопа |
MPU6000 | SPI, i2c | 8K |
MPU6050 | i2c | 4K |
MPU6500 | SPI, i2c | 32K |
MPU9150* | i2c | 4K |
MPU9250* | SPI, i2c | 32K |
ICM20602 | SPI, i2c | 32K |
ICM20608 | SPI, i2c | 32K |
ICM20689 | SPI, i2c | 32K |
MPU9150 — это MPU6050 со встроенным магнитометром AK8975, а MPU9250 — это MPU6500 и тоже с магнитометром.
Есть два критерия, которые нужно учитывать при выборе полетного контроллера с конкретным гироскопом, это частота работы и чувствительность к шумам (электро- и механическим).
На сегодня самыми популярными и надежными считаются гироскопы MPU6000, у них частота работы 8KHz, а также они достаточно не чувствительны к шумам. Советуем не покупать полетные контроллеры с гироскопами MPU6500 и MPU9250, у них хоть и частота выше, но они больше подвержены воздействию шумов.
Серия гироскопов ICM работает лучше и плавнее, чем MPU6000 на 32KHz, но из-за шумных двигателей и регуляторов оборотов производительность ICM будет ниже, чем MPU6000. Например, ICM20602 на Raceflight Revolt V2 или ICM20689 на Kakute F4, оба этих гироскопа могут работать на частоте 32KHz, но с регуляторами оборотов, которые генерируют много шума, они работать будут хуже, чем MPU6000. По этой причине на полетные контроллеры устанавливают сетевые фильтры для частичного удаления шумов.
i2c и SPI
SPI и i2c — это протоколы связи (BUS) между процессором и гироскопом . В зависимости от того, какой будет протокол, будет зависеть скорость работы самого гироскопа. Гироскоп сможет работать на частоте 32KHz с протоколом SPI, в то время как на i2c можно рассчитывать на «потолок» в 4 KHz. Поэтому выбирайте ПК с SPI.
Прочие функции
OSD может показывать разную информацию на экране: напряжение аккумулятора, таймер и т.д. Те, кто знакомы с MinimOSD помнят сложность настройки, но если вам нравится эта функциональность, тогда выбирайте ПК с OSD.
Betaflight OSD настраивать значительно проще.
PDB или плата распределения питания — достаточно часто встречается в современных ПК, так что регуляторы скорости и основной LiPo аккумулятор подключаются напрямую к полётнику. Благодаря тому, что ПК и PDB это одна плата, а не две, мы экономим место в раме, упрощается разводка и пайка проводов. Недостаток такого решения — у некоторых ПК очень маленькие контактные площадки для пайки.
Датчик тока
Необходимость датчика тока не подлежит сомнению, потребляемый ток и съеденная емкость гораздо полезнее, чем просто напряжение аккумулятора, да и для тестов пригодится.
Подробнее про датчик тока и его калибровку (англ).
Регуляторы скорости
Встроенной PDB недостаточно? Есть ПК со встроенными регуляторами! Это значит, что моторы нужно подключать непосредственно к полетному контроллеру, что ещё больше упрощает сборку.
RacerStar Tattoo F4S FC — первый такой ПК в моих руках.
Данные черного ящика (англ.)
Есть два способа записать и сохранить данные черного ящика: на чип флэш-памяти установленный на плате ПК или на MicroSD карточку, вставленную в слот.
Чип памяти дешевле, но как правило он имеет небольшую емкость и хранит относительно немного данных, обычно 10-15, иногда 20 минут полетного времени (в зависимости от частоты запрашиваемых данных). Кроме того, загрузка данных с этого чипа идет довольно медленно, может уйти до 5 минут времени на загрузку лога длиной всего 1 минуту.
ПК со встроенным слотом для MicroSD карточек, позволяют хранить данные неделями, без необходимости очистки свободного места. Кроме того, чтение логов очень быстрое.
На мой взгляд выбирать нужно в зависимости от того, как часто вы планируете использовать черный ящик. Если хотите серьезно изучать полетные данные, тогда точно нужно брать ПК с MicroSD слотом.
Кстати, есть еще третий вариант — можно купить внешний логгер (Open Logger) со слотом для microSD и подключить его через свободный UART к ПК.
Типы разъемов
Три основных типа разъемов на полетных контроллерах:
- Пластиковые разъемы типа JST
- Контактные площадки («пятаки») для непосредственной пайки проводов
- Сквозные отверстия
Пластиковые разъемы менее надежны, но при этом позволяют быстро отключать/подключать кабели. Контактные площадки более крепкие, но есть риск их перегреть при пайке, и они отслоятся от платы. Наиболее универсальный вариант — сквозные отверстия: можно припаять провода или штыревые разъемы.
В большинстве полётников уже есть стаб на 5 вольт. В некоторых есть и на 9, и 12 вольт (или на какое-нибудь другое напряжение).
Несмотря на то, что значительную часть FPV оборудования (камеры, видеопередатчики) можно подключать напрямую к литиевому аккумулятору, я считаю, что изображение будет лучше, если питать их через стабилизатор.
Подробнее про подключение FPV оборудования для минимизации помех (англ).
Нажатая кнопка boot при подаче питания переводит процессор полетного контроллера в режим загрузчика (bootloader mode). В этом режиме можно обновить прошивку, даже если стандартные программы этого сделать не могут.
У многих ПК есть два контакта которые нужно закорачивать для этой цели. Но гораздо приятнее, когда есть кнопка.
- Встроенный видеопередатчик — главное преимущество: экономия места и веса, у некоторых видеопередатчиков можно менять настройки прямо через контроллер
- Барометр / магнитометр (компас) — это дополнительные датчики, которые совсем не обязательны для гонщиков
- Поддержка протоколов приемника — убедитесь, что ПК поддерживает протокол вашего приемника: PWM, PPM, SBUS, Spektrum Satellite и т.д.
- «Все-в-одном» — такой полетный контроллер состоит из одной платы, на которой есть всё необходимое: PDB, регуляторы, приемник и т.д. Недостаток — если что-то сгорит, то скорее всего придется менять плату целиком
- Поддержка инфракрасного транспондера — позволяет вам изменять время круга самостоятельно
OSD — это очень важная и нужная функция. OSD накладывает на видеопоток дополнительную информацию с различных датчиков квадрокоптера, например, напряжение аккумулятора, высота, скорость и так далее. Любой, кто сталкивался с minimOSD, знает, какая трудность — подключить и настроить эту плату, да и мало подключить, ее еще нужно программатором прошить, и только после этого плату OSD можно будет настраивать в Betaflight.
Поэтому делайте выбор в пользу полетных контроллеров с встроенным OSD, это сбережет вам нервы и время.
К плате разводки питания подключаются аккумулятор и двигатели с регуляторами оборотов, а также полетный контроллер и прочая периферия. У некоторых ПК такая плата уже есть, они совмещены. Это, конечно, плюс, но где плюсы, там и минусы — в такой компоновке будет мало места, и в случае поломки ее будет сложнее устранять.
Размеры платы полетного контроллера
Монтажная схема полетного контроллера — это расстояние между отверстиями для крепления ПК к раме дрона. В этом вопросе есть стандарт, который состоит из 3 схем:
- 30,5 × 30,5 мм,
- 20 × 20 мм,
- 16 × 16 мм.
Размер платы соответствует размеру дрона, который вы будете собирать, например, 30,5 х 30,5 мм устанавливаются в рамы размером от 200 мм и больше, а на меньшие рамы устанавливаются последующие размеры полетных контроллеров.