Изобретения Николы Теслы: самые важные, секретные и необычные

Изобретения Николы Теслы: самые важные, секретные и необычные Лодки

Башня теслы

Тесла не остановился на беспроводной системе освещения и пошёл дальше. Он решил, что можно в принципе не использовать высоковольтные провода для передачи тока и передавать всю электроэнергию посредством воздуха. Для этого он хотел построить огромную экспериментальную установку в Нью-Йорке, известную как башня Теслы или башня Ворденклиф.

Изобретения Николы Теслы: самые важные, секретные и необычные
Одна из страниц патента на башню Теслы

Деньги на строительство от получил от известного в то время финансиста Дж. П. Моргана, которому он сообщил, что башня будет использоваться для трансатлантической беспроводной телефонии и вещания, на чём Морган планировал заработать. По сути это была первая подобная башня в своём роде.

В 1901 году началось строительство башни и продолжалось до 1903 года. Вторую башню-приёмник планировалось построить около Ниагарского водопада. Когда первую башню в Ворденклифе почти достроили, Морган понял, что беспроводная передача электроэнергии может привести к обрушению всего рынка, в котором он имел вложения (ему принадлежала Ниагарская ГЭС), то он прекратил финансирование проекта Теслы.

Изобретения Николы Теслы: самые важные, секретные и необычные
Как устроена башня Теслы

Башня в Ворденклифе представляла из себя огромную катушку Теслы высотой около 60 метров, на верхушки которой была большая медная сфера. Башня генерировала молнии длиной до 40 метров, а гром от высвобождаемой электроэнергии порождал гром, который можно было услышать за 24 километра от башни. Вес башни достигал 55 тонн, а диаметр 21-го метра.

Смотрите про коптеры:  Комплект умного дома - Протокол связи Bluetooth

Изобретения Николы Теслы: самые важные, секретные и необычные
Башня Уорденклифф изнутри

В 1905 году был произведён тестовый пуск, который произвёл шокирующий эффект. В газетах писалось, что Тесла сумел зажечь небо над океаном на тысячи миль. Вокруг же самой башни лошади получали удары током и даже крылья бабочек наэлектризовались до такой степени, что вокруг них можно было видеть «Огни Святого Эльма» (коронный разряд).

К сожалению, башню снесли в 1917-м году.

Безлопастная турбина теслы

Изобретения Николы Теслы: самые важные, секретные и необычные
Турбина Теслы из музея

Эту турбину Тесла запатентовал в 1913 году. Изобретение турбины без лопастей по сути было вынужденным, так как для изготовления турбины с лопастями не было подходящих технологий, да и аэродинамическая теория ещё не была создана, поэтому Тесла решил использовать эффект пограничного слоя, а не давление вещества на лопатки, как сейчас широко распространено в традиционных турбинах.

Устройство турбины Теслы
Устройство турбины Теслы

Часто можно встретить утверждения, что КПД его турбины может теоретически достигать 95%, но на практике на заводах Вестингауза такая турбина показала КПД в районе 20%. Хотя позже различные модификации турбины другими изобретателями доводили КПД до 40% и более.

Путь жидкости в турбине Теслы
Путь жидкости в турбине Теслы

Беспроводное освещение

В 1891 году Тесла усовершенствовал передатчик волн, изобретённый Герцом, который был необходим для радиочастотного снабжения энергией, переделав его в систему освещения, состоящую из газоразрядных ламп.

В этом же году он продемонстрировал в Колумбийском колледже своё изобретение.

Когда мы говорим о том, что освещение беспроводное, не имеются в виду радиоволны, речь идёт об электростатической индукции.

Изобретения Николы Теслы: самые важные, секретные и необычные
В руках у Теслы две длинные трубки Гейсслера , которые похожи на неоновые лампы.
В 1893 году в Чикаго проходит всемирная выставка, где Тесла демонстрирует своё изобретение. Лампы были не только беспроводными, но и люминесцентными.

В 1894 году новое достижение. Удаётся зажечь фосфорную лампу накаливания в своей лаборатории, используя резонансный метод взаимоиндукции.

Правда широкого коммерческого применения такая лампа найти не смогла, но резонансный метод индуктивной связи сейчас применяется повсеместно в электронике.

Генератор переменного тока

Генератор переменного тока — это электрическая машина, которая является составной частью полифазной системы электроснабжения Теслы, о которой речь пойдёт ниже. Генератор создаёт переменный ток, используя механическую работу (например, генераторы, установленные на дамбах, использующие падающую на их лопасти воду).

Мы не будем объяснять принцип работы генератора. Посмотрите видео ниже, если хотите понять подробнее.

Альтернатор Теслы (другое название генератора переменного тока) превосходил все другие по той простой причине, что он был действительно эффективен на практике. Свой генератор Тесла изобрёл ещё будучи на 2 курсе и уже тогда обращался к своим преподавателям с идеей использования переменного тока, но от его идей все отмахивались, как от бредовых. Некоторые профессора даже просто смеялись над его изобретениями.

В 1882 году Тесла работает в Париже и создаёт первый рабочий прототип своего генератора.

Приехав в 1884 году в США, Тесла направился к тогда уже известному изобретателю и коммерсанту в области электричества Томасу Эдисону и устроился к нему на работу. Попутно Тесла предлагал Эдисону свои идеи по использованию переменного тока, но Эдисон считал, что он сошёл с ума, раз думает, что переменный ток можно хоть как-то использовать.

Дошло даже до того, что Тесла, не поняв сарказма Эдисона, подумал, что получит большую сумму от Эдисона, если сделает несколько десятков определённых изобретений на заказ. Тесла их сделал, а Эдисон сказал, что пошутил, а Тесле рекомендовал научиться понимать американский юмор.

В 1891 году Тесла получает в США патент на первый в мире альтернатор.

Генератор переменного тока 1891 года
Генератор переменного тока 1891 годаПатент Теслы на генератор переменного тока
Генератор переменного тока 1891 годаИзобретения Николы Теслы: самые важные, секретные и необычные

Патент Теслы на генератор переменного токаИзобретения Николы Теслы: самые важные, секретные и необычные
Многофазный генератор Теслы мощностью 500 л.с. (около 370 кВт) на выставке Вестингауза

Двигатель переменного тока

Двигатель переменного тока или асинхронная машина — это ещё один этап в развитии идей применения переменного тока. Генератор переменного тока мы уже обсудили, значит электричество мы получаем, но что с ним делать дальше? У нас ведь нет машин, которые бы работали от переменного тока! Вот Тесла их и изобрёл.

Изобретения Николы Теслы: самые важные, секретные и необычные
Патент Теслы на электрический двигатель 1888 года

В 1880-е года множество изобретателей пыталось изобрести рабочие варианты двигателей переменного тока, но сделать этого не удавалось. Галилео Феррарис занимается теоретическим исследованием создания двигателей переменного тока и приходит к ошибочному выводу, что они попросту не могут быть эффективными и коммерчески успешными.

Это добавило мотивации изобретателям всего мира, это звучало как вызов — создать эффективный двигатель переменного тока. Тесла отвечает на этот вызов и демонстрирует в 1887 году свой первый вариант двигателя, работающего на переменном токе, а в 1887 году совершенствует свою модель, выпуская вторую машину.

Изобретения Николы Теслы: самые важные, секретные и необычные
Один из оригинальных электрических моторов Теслы 1888 года.

Основная причина, по которой рациональное использование двигателей переменного тока казалось невозможным, заключалась в том, что они были однофазовыми. Тесла же обосновал теоретически и доказал практически, что можно не ограничиваться одной фазой, а делать две или больше фаз.

На картинке ниже показано схематически устройство двух- и трёхфазных двигателей переменного тока:

Изобретения Николы Теслы: самые важные, секретные и необычные
Позже Тесла изобретает и патентует множество модифицированных моторов и двигателей переменного тока. Все эти патенты, как писалось выше, Тесла продаёт Вестингаузу.Изобретения Николы Теслы: самые важные, секретные и необычные
Позже Тесла изобретает и патентует множество модифицированных моторов и двигателей переменного тока. Все эти патенты, как писалось выше, Тесла продаёт Вестингаузу.Изобретения Николы Теслы: самые важные, секретные и необычные

Двухфазный электрический двигатель переменного тока из коллекции Вестингауза.Изобретения Николы Теслы: самые важные, секретные и необычные
4-х фазный электрический двигатель переменного тока из коллекции Вестингауза.Изобретения Николы Теслы: самые важные, секретные и необычные
4-х фазный электрический двигатель переменного тока из коллекции Вестингауза.Изобретения Николы Теслы: самые важные, секретные и необычные

Полифазный электрический двигатель переменного тока из коллекции Вестингауза.

Двигатель прогресса. 8 изобретений томаса эдисона

В 1869 году в свет вышел первый в истории тикерный аппарат – устройство для передачи котировок акции по телефонным или телеграфным проводам. С помощью тикерной машины на непрерывной бумажной ленте печатались текущие котировки ценных бумаг со скоростью один символ в секунду.

Следующим успешным проектом Эдисона стал квадруплексный телеграф. Томас усовершенствовал имеющуюся дуплексную схему, и после этого телеграф Эдисона был способен передавать четыре сообщения по одному проводу. Commons.wikimedia.org / Библиотека Конгресса США

В середине 1870-х Томас Эдисон изобрёл мимеограф – относительно небольшое устройство для трафаретной печати для тиражирования книг малыми и средними партиями. Мимеограф состоял из электрического пера и копировального ящика. Commons.wikimedia.org / Early Office Museum

К концу 1870-х Томас Эдисон собрал свой первый фонограф, работу над которым изобретатель вёл около 20 лет. Представленное Эдисоном устройство позволяла записывать и воспроизводить музыку и речь, использоваться в качестве говорящих часов, а также служило «вспомогательным приспособлением к телефону». Commons.wikimedia.org / Levin C. Handy

Одним из наиболее ярких изобретений Томаса Эдисона стала лампа накаливания с угольной нитью – его версия лампы позволяла гореть около 40 часов. Кроме того, Эдисон также изобрёл поворотный выключатель. Именно с этого момента лампы начали вытеснять на рынке газовые приборы освещения. Commons.wikimedia.org / William J. Hammer

Томас Эдисон также является изобретателем кинетоскопа. В устройстве были реализованы принцип покадрового показа плёнки. При прокрутке со скоростью 15 кадров в секунду у зрителей возникало ощущение того, что объекты на изображении движутся. Commons.wikimedia.org / Edison Manufacturing Company

В 1889 году Томас Эдисон представил свой электрический стул. Когда власти США искали гуманную альтернативу повешению, изобретатель смог убедить общественность в том, что его устройство отвечает требованиям времени. При этом сам Эдисон стремился показать губительность переменного тока, который использовали в своей продукции его конкуренты. Commons.wikimedia.org / George Eastman House

Знаменитый изобретатель также приложил руку к изобретению аккумуляторов – батарей с возможностью многократной зарядки. В конце XIX века никель-кадмиевый аккумулятор изобрёл швед Вальдемар Юнгнер, но пока они не дошли до США популярностью пользовались железо-никелевые батареи Эдисона. Например, они устанавливались на электромобиль Detroit Electric. Commons.wikimedia.org / Edison Storage Battery Company

Изобретение радио и радиоуправления

Изобретения Николы Теслы: самые важные, секретные и необычные
Тесла демонстрирует свою радиоуправляемую лодку

20-й век крайне богат на различные изобретения и технические новинки. Многие изобретались параллельно в различных вариациях, при этом кто-то патентовал свои изобретения, а кто-то это сделать не мог или не хотел по каким-то причинам. Поэтому достаточно сложно установить, кто же первым изобрёл радио.

Так, например, в США считают, что радио изобрели Дэвид Хьюз, Томас Эдисон и Никола Тесла, которые сделали соответствующий технический вклад для этого изобретения; в Германии полагают, что радио изобрёл Генрих Герц, а во Франции — Эдуард Бранли; В Белоруссии в изобретатели радио записывают Якова Наркевича-Иодку;

В Бразилии полагают, что изобретателем радио был Ландель де Муру; в Англии — Оливер Джозеф Лоджа; в СССР же общепринятым было считать изобретателем радио Александра Степановича Попова и так далее ещё для многих стран. Гульермо Маркони же следует считать не изобретателем радио, как технологии или законченной системы, а как создателем первой успешной в коммерческом плане реализации системы радио.

Все их патенты и изобретения появлялись в промежутке 1880-1895 годов и все они занимались исследованием радиоволн. Попросту говоря, они все были изобретателями радио в той или иной степени, делая свой вклад в развитие теории передачи информации.

Но что же сделал Тесла? А он сделал тоже не мало. Он описал принципы, по которым можно было передавать радиосигнал на большие расстояния, провёл ряд собственных экспериментов по передаче сигналов, а также создал первую радиоуправляемую лодку, которую продемонстрировал на электротехнической выставке в 1898 году. Правда он не считал, что при помощи радиоволн возможно общение.

Изобретения Николы Теслы: самые важные, секретные и необычные
Радиоуправляемая лодка Николы ТеслыИзобретения Николы Теслы: самые важные, секретные и необычные
Радиоуправляемая лодка Николы ТеслыИзобретения Николы Теслы: самые важные, секретные и необычные

Одна из страниц патента на радиоуправляемую лодку Николы Тесла

На видео вы можете посмотреть лодку, которую собрали в 2020 году по подобию той, что была у Теслы:

Лодка контролировалась при помощи радиоуправления. Тесла продемонстрировал эту лодку в 1898 году на выставке электротехнике в Мэдисон Сквер Гарден. Там она произвела фурор. Представьте себе людей того времени, которые не понимали, каким образом Тесла управляет лодкой, приказывая ей плыть в то или иное место. Кроме слова «магия» здесь сложно что-то было подобрать для обывателя того времени.

Хотя газетчики того времени сразу начали называть изобретение Теслы «радиоуправляемой торпедой» (видимо, из-за того, что в то время Томас Эдисон пытался изобрести подобную торпеду и продать военным), сам же Тесла не нацеливался на войну. В 1900 году журнал Centure взял интервью у изобретателя, где тот сообщил, что целью его изобретения является попытка создать «искусственный интеллект», так как современные автоматы попросту заимствуют разум человека и откликаются только на его приказы.

Позже во время Второй мировой войны нацисты догадаются использовать радиоуправления для создания дистанционно управляемых танков.

Рекомендуем также интересную статью про современные российские разработки в области боевой робототехники.

Катушка или трансформатор теслы

Тесла изобрёл свою катушку примерно в 1891 году. В то время он повторял эксперименты Герниха Герца, который обнаружил электромагнитное излучение тремя годами ранее. Тесла решил запустить его устройство вместе с высокоскоростным генератором переменного тока, который он разрабатывал в рамках улучшения системы дугового освещения, но он обнаружил, что ток высокой частоты перегревает стальной сердечник и плавит изоляцию между первичной и вторичной обмотками в катушке Румкорфа, которая использовалась по умолчанию в экспериментах Герца.

Для устранения этой проблемы Тесла решает изменить конструкцию таким образом, чтобы образовался воздушный зазор между первичной и вторичной обмотками, вместо изоляционного материала. Тесла сделал так, что сердечник мог быть перемещён в различные положения в катушке.

Тесла также установил конденсатор, который обычно используются в таких установках между генератором и его первичной катушкой обмотки, чтобы избежать выгорания катушки. Экспериментируя с настройками катушки и конденсатора, Тесла обнаружил, что он мог бы воспользоваться возникающим резонансом между ними для достижения более высоких частот.

В катушке трансформатора Теслы конденсатор, после пробивания короткой искры, подключался к катушке из нескольких витков (первичная катушка), формируя таким образом резонансный контур с частотой колебания, как правило, 20-100 кГц, определяемый ёмкостью конденсатора и индуктивностью катушки.

Конденсатор заряжался до напряжения, которое необходимо для пробоя воздушного искрового промежутка, при входном линейном цикле, что достигает примерно 10 киловольтам при использовании линейного трансформатора, который подключён через воздушный зазор.

Линейный трансформатор был спроектирован так, чтобы иметь более высокую, чем обычно, индуктивность рассеяния (параметр, отражающий неидеальность трансформатора), чтобы выдерживать короткое замыкание, возникающее в то время, когда зазор оставался ионизированным, или в течение нескольких миллисекунд, пока ток высокой частоты не исчезал.

Искровой разрядник настраивался таким образом, чтобы его пробой происходил при напряжении, которое несколько меньше пикового выходного напряжения трансформатора, чтобы максимизировать напряжение на конденсаторе. Внезапный ток, проходящий через искровой промежуток, вызывает резонанс первичной резонансной цепи на её резонансной частоте.

Кольцевая первичная обмотка магнитно соединяет энергию с вторичной обмоткой в течение нескольких радиочастотных циклов, пока вся энергия, которая первоначально была в первичной обмотке, не перенесётся на вторичную. В идеале зазор затем прекращает проведение тока (гашение), захватывая всю энергию в колебательный вторичный контур.

Обычно промежуток снова начинает расти, а энергия вторичных передач возвращается к первичной цепи в течение ещё нескольких радиочастотных циклов. Цикл энергии может повторяться несколько раз, пока искровой промежуток окончательно не ослабнет. Как только зазор прекратит проводить ток, трансформатор начнёт заряжать конденсатор.

Более заметная вторичная обмотка с значительно большим количеством витков более тонкой проволоки, чем у вторичной, была расположена для перехвата части магнитного поля первичной обмотки. Вторичная система была сконструирована так, чтобы иметь такую же частоту резонанса, что и первичная, используя только паразитную ёмкость (нежелательная ёмкостная связь) самой обмотки на «землю», а также любую клемму, расположенную в верхней части вторичной обмотки. Нижний конец длинной вторичной обмотки должен быть заземлён.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод.

Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла. Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Многофазная система электроснабжения

Тесла обратил внимание, что электрические станции постоянного тока Эдисона неэффективны, а Эдисон уже застроил ими всё Атлантическое побережье США. Чтобы преодолеть недостатки постоянного тока, надо было, по идее Теслы, использовать переменный ток. Многофазной такая система называется потому, что двигатели и генераторы имеют несколько фаз (см. пояснения выше).

Лампа Эдисона
Лампа Эдисона

Лампы Эдисона были слабыми и неэффективными при использовании постоянного тока. Вся эта система имела один большой недостаток в том, что она не могла транспортировать электричество на расстояние более 3 км из-за неспособности изменять напряжение до высокого уровня, необходимого для передачи на большие расстояния. Поэтому электростанции постоянного тока устанавливались с интервалом в 3 км.

Изобретения Николы Теслы: самые важные, секретные и необычные
Схема работы многофазных систем электроснабжения

Переменный ток, как писалось выше, мог достигать больших напряжений и поэтому его можно было передавать на огромные расстояния (выйдите из дома и посмотрите на ближайшие высоковольтные линии электропередач, это оно самое).

Когда Эдисон узнал, что у него появился столь мощный конкурент, он понял, что может потерять свою империю постоянного тока. Именно так и началась война между Вестингауза вместе с Теслой против Эдисона, которую назовут войной токов. Эдисон начал усиленно пытаться дискредитировать изобретение Теслы, показывая, что переменный ток более опасен для жизни, чем постоянный.

Стоит также отметить, что когда Тесла приехал в США, то сначала он предложил свои разработки Эдисону, но он назвал всё это вздором и сумасшествием.

Эдисон бил переменным током животных на публике, чтобы привести их в ярость и доказать, что этот вид тока опасен. Однажды Эдисон узнал об идее одного врача, об использовании переменного тока для умерщвления людей. Реализация не застала себя ждать. Так был изобретён электрический стул, который впервые применили к Уильяму Кеммлеру, виновному в убийстве своей любовницы.

Эдисон долго не мог придумать для своего нового изобретения название, но ему больше всего нравилось слово «увестингаузить», правда ни один из них, как мы теперь видим, не прижился.

На пути к появлению электричества

Древнегреческий философ Фалес, живший в 7 веке до нашей эры, выяснил, что если потереть янтарь о шерсть, то к камню начнут притягиваться мелкие предметы. Лишь спустя много лет, в 1600 году, английский физик Уильям Гилберт ввел термин «электричество».

С этого момента ученые стали уделять ему внимание и проводить исследования в этой области. В 1729 Стивен Грей доказал, что электричество можно передавать на расстоянии. Важный шаг был сделан после того, как французский ученый Шарль Дюфэ открыл, как он считал, существование двух видов электричества: смоляного и стеклянного.

Первым, кто попробовал объяснить, что такое электричество, был Бенджамин Франклин, портрет которого нынче красуется на стодолларовой купюре. Он считал, что все вещества в природе имели «особую жидкость». В 1785 был открыт закон Кулона. В 1791 году итальянский ученый Гальвани исследовал мышечные сокращения у животных. Он выяснил, проводя опыты на лягушке, что мышцы постоянно возбуждаются мозгом и передают нервные импульсы.

Огромный шаг на пути к изучению электричества был сделан в 1800 году итальянским физиком Алессандром Вольта, который придумал и изобрел гальванический элемент — источник постоянного тока. В 1831 году англичанин Майкл Фарадей изобрел электрический генератор, который работал на основе электромагнитной индукции.

Огромный вклад в развитие электричества внес выдающийся ученый и изобретатель Никола Тесла. Он создал приборы, которые до сих пор используются в быте. Одна из самых известных его работ — двигатель переменного тока, на основе которого был создан генератор переменного тока. Также он проводил работы в области магнитных полей. Они позволяли использовать переменный ток в электродвигателях.

Еще одним ученым внесшим вклад в развитие электричества, был Георг Ом, который экспериментальным путем вывел закон электрической цепи. Другим выдающимся ученым был Андре-Мари Ампер. Он изобрел конструкцию усилителя, которая представляла собой катушку с витками.

Также важную роль в изобретении электричества сыграли:

  • Пьер Кюри.
  • Эрнест Резерфорд.
  • Д. К. Максвелл.
  • Генрих Рудольф Герц.

Патентное ведомство соединённых штатов. никола тесла – патенты

Никола Тесла – Патенты

Изобретения Николы Теслы: самые важные, секретные и необычные

www.e-puzzle.ru

НИКОЛА ТЕСЛА

ПАТЕНТЫ

Самара Издательский дом «Агни» 2009

Т36

Издательство выражает признательность директору Музея Н Теслы в Белграде Марии Сесич за активное участие и содействие в издании этой книги

Ответственный редактор Г. Л. Бажуков

Научные редакторы доктор философских наук, профессор Велимир Абрамович кандидат технических наук В. Д. Привалов Перевод А. Е. Дунаев

Тесла Н.

Т36 Патенты — Самара: Издательский дом «Агни», 2009. — 496 с.: ил.

1БВЫ 978-5-89850-126-6

«Повелитель вселенной», «человек из будущего», инициатор всемирной информационной и энергетической систем – это не метафоры писателя-фантаста, все эти определения относятся к Николе Тесле, прежде всего инженеру, ученому, изобретателю. Возможно, в мире нет такого специалиста, чьи труды столь востребованы и актуальны до настоящего времени и послужат человечеству еще много лет. Это система переменного тока, практически все виды генераторов и двигателей переменного тока, газоразрядные лампы, преобразователи высокого напряжения, резонансные системы, радиосвязь, радиоуправление, кодирование информации и еще многое, чему мы обязаны Николе Тесле.

За свою многолетнюю творческую жизнь Тесла запатентовал свыше 300 изобретений в разных странах. И сегодня читатель впервые может познакомиться с ними на русском языке. Характерными чертами его патентов являются их практическая направленность и реализуемость. Возможно, чрезвычайная тщательность описаний и витиеватость формул изобретений вызовет раздражение у читателей. Возможно также, что читатели, представляющие Теслу как некоего мага, обладавшего секретом управления энергией космоса, перемещения во времени и пространстве, будут разочарованы, увидев в патентах описание столь земных и даже легко реализуемых устройств и способов. Специалист будет удивлен обилием технических решений, ставших классическими, и большим запасом технических решений, еще ожидающих своего осознания и применения. К таким изобретениям можно отнести, например, приемник «лучистой энергии». До сих пор мы ничего не знаем определенного о принципе его действия, возможно, имелся в виду преобразователь энергии, рождаемой космическими лучами.

Несмотря на строгие каноны патентного ведомства, через текст и иллюстрации патентов проявляется и дух того времени, и характер этого загадочного ученого и изобретателя. К сожалению, мы пока не знакомы с патентными материалами или другими значимыми документами, связанными с наиболее зрелым периодом его деятельности, что и привело к возникновению множества легенд, не всегда обоснованных. Но время и стремление к знаниям, будем надеяться, позволят проникнуть в творческую лабораторию ученого-экспериментатора.

ББК 20г

© Издательский дом «Агни», 2009

15ВЫ 978-5-89850-126-6

СОДЕРЖАНИЕ

I. ДВИГАТЕЛИ И ГЕНЕРАТОРЫ 5

1. Коллектор динамоэлектрической машины б

2. Регулятор динамоэлектрической машины 9

3. Регулятор динамоэлектрической машины 15

4. Регулятор динамоэлектрической машины 20

5. Динамоэлектрическая машина 24

6. Электромагнитный двигатель 31

7. Электромагнитный двигатель 44

8. Электромагнитный двигатель 50

9. Коллектор динамоэлектрической машины 58

10. Динамо-машина 65

11. Динамо-машина, или двигатель 71

12. Динамо-машина 74

13. Регулятор для двигателей переменного тока 80

14. Метод управления электромагнитным двигателем 87

15. Электромагнитный двигатель 94

16. Динамо-машина 99

17. Метод приведения в действие электромагнитных двигателей 103

18. Электромагнитный двигатель 110

19. Электродвигатель 114

20. Электромагнитный двигатель 118

21. Якорь электромашин 126

22. Электромагнитный двигатель 131

23. Электромагнитный двигатель 135

24. Электромагнитный двигатель переменного тока 141

25. Двигатель переменного тока 146

26. Электротрансформатор, или индукционное устройство 150

27. Электромагнитный двигатель 155

28. Электромагнитный двигатель 160

29. Электрогенератор переменного тока 165

30. Электромагнитный двигатель 173

31. Электромагнитный двигатель 179

32. Электромагнитный двигатель 186

33. Электрогенератор 190

34. Электромагнитный двигатель 200

35. Двигатель переменного тока 205

II. ПЕРЕДАЧА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 211

36. Система распределения электрического тока 212

37. Система распределения электрического тока 219

38. Метод электрической передачи энергии 226

39. Система электрической передачи энергии 230

40. Электрическая передача энергии 239

41. Система электрической передачи энергии 244

42. Электрическая передача энергии 253

III. СВЕТ 258

43. Дуговая лампа 259

44. Дуговая лампа 266

45. Метод питания дуговой лампы 274

46. Система электрического освещения 278

47. Лампа накаливания 286

48. Лампа накаливания 291

IV. УСТРОЙСТВА, РАБОТАЮЩИЕ С ТОКАМИ ВЫСОКИХ ЧАСТОТ, И КОНТРОЛЛЕРЫ ЦЕПИ

49. Метод и устройство преобразования

и распределения электрической энергии

50. Средства генерирования электрического тока

51. Устройство для генерирования токов высоких частот и потенциала

52. Метод регулирования аппаратуры

для производства токов высоких частот

53. Метод и устройство для генерирования токов высоких частот

54. Устройство для генерирования токов высоких частот

55. Устройство для генерирования токов высоких частот

56. Устройство для генерирования токов высоких частот

57. Электрический трансформатор

58. Контроллер электрической цепи

59. Контроллер электрической цепи

60. Контроллер электрической цепи

61. Контроллер электрической цепи

62. Контроллер электрической цепи

63. Контроллер электрической цепи

64. Контроллер электрической цепи

65. Контроллер электрической цепи

V. РАДИО

66. Устройство для передачи электрической энергии

67. Средства увеличения интенсивности электрических колебаний

68. Метод усиления и использования эффектов, переданных через естественную среду

69. Методы применения эффектов, переданных через естественную среду

70. Устройство для использования энергии излучения

71. Метод передачи сигналов

72. Способ передачи электрической энергии через естественную среду

73. Устройство для передач электроэнергии

VI. ТЕЛЕМЕХАНИКА (ДИСТАНЦИОННОЕ УПРАВЛЕНИЕ)

74. Способ и устройство для управления машинным механизмом движущихся судов или сухопутных средств передвижения

Изобретения Николы Теслы: самые важные, секретные и необычные

Изобретения Николы Теслы: самые важные, секретные и необычные

Никола Тесла (1856-1943) ~ величайший ученый – был человеком несветским: он не любил наград, различных знаков отличия и никогда не позировал художникам. Единственное полотно, которое вошло в историю как «Синий портрет», было написано знаменитой портретисткой Вильмой Львофф-Парлаги (1863-1923). Он был представлен на суд публике па вер нисаже 1 марта 1916 года в ее нью-йоркской студии. Тесла лично создал в студии искусственный синий свет, олицетворявший его изобретательский гений. Успех был ошеломительным: газета «Нью-Йорк тайме» писала об «искусственном солнце», создающем «рукогпворное Северное сияние». Для много численных почитателей Теслы этот портрет стал иконой.

После смерти художницы в 1923 году картину приобрел ее друг и патрон коммерсант Людвиг Ниссен, передавший часть своей коллекции, куда вошел и «Синий портрет», родному городу Хузум в Германии. Там она вошла в каталог как «Портрет неизвестного». И только в 1991 году изыскания, предпринятые музеем Теслы в Белграде (Сербия) и в Тегернзее (Германия), позволили д-ру Штекнеру и д-ру Астрид Фрик из музея Северного моря в Ху- зуме идентифицировать полотно как «Синий портрет» Н. Теслы.

В начале 2009 года музей Хузума принял решение о реставрации порт рета, и с этой задачей блестяще справилась Сюзанна Герлах. Открытая презентация уникума состоялась 2 марта 2009 года в рамках выставки «Миф, энергия и княгиня-портретистка. «Синий портрет» Николы Теслы, человека, осветившего мир».

Первостепенное значение для эволюции человека имеет изобретательность. Это самый важный продукт его творческого мышления.

Никола Тесла

I

ДВИГАТЕЛИ И ГЕНЕРАТОРЫ

1

ПАТЕНТНОЕ ВЕДОМСТВО СОЕДИНЁННЫХ ШТАТОВ

НИКОЛА ТЕСЛА, ПРОЖИВАЮЩИЙ В СМИЛЯНАХ ЛИКИ, АВСТРО-ВЕНГРИЯ, ПЕРЕУСТУПАЮЩИЙ ПРАВА НА ДАННОЕ ИЗОБРЕТЕНИЕ ФИРМЕ «ТЕСЛА ЭЛЕКТРИК ЛАЙТ ЭНД МАНУФАКЧУРИНГ КОМПАНИ», РАУЭЙ, НЬЮ-ДЖЕРСИ

КОЛЛЕКТОР ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ

ОПИСАНИЕ, ЯВЛЯЮЩЕЕСЯ ЧАСТЬЮ ПАТЕНТА № 334823 ОТ 26 ЯНВАРЯ 1886 Г. ЗАЯВКА ОТ 6 МАЯ 1885 Г., НОМЕР ЗАЯВКИ № 164534 (МОДЕЛЬ НЕ ПРИЛАГАЕТСЯ)

Всем заинтересованным лицам:

Я, Никола Тесла из Смилян, что в Лике (провинция Австро-Венгрии), изобрел усовершенствование для динамоэлектрической машины, описание которого приводится ниже. Данное изобретение связано с коллектором динамоэлектрической машины, особенно машин с большой эдс, используемых для дуговых ламп, и является устройством, позволяющим предотвратить искрение на коллекторе.

Известно, что в машинах с большой эдс, в частности используемых для дуговых ламп, при разъединении коллекторной пластины или ламели со сборной щеткой проскакивает искра на коллекторе. Причиной появления искры может быть разъединение замкнутой цепи или шунтирование щеткой двух или более коллекторных пластин. В первом случае искра более заметная, поскольку в момент разрыва цепи происходит освобождение энергии магнитного поля, следствием чего является сильная искра или вспышка, которая прерывает ток, приводит к быстрому износу коллекторных пластин и щеток и расходу энергии. Искрение может быть ослаблено различными способами, например, отводом тока в момент разъединения щетки с сегментом коллектора или ламели, закорачиванием обмоток, увеличением числа коллекторных пластин или другим подобным способом; но все эти методы дорогостоящи, трудноосуществимы, а самое главное – малоэффективны.

Мое изобретение позволяет избежать искрения весьма простым способом. Для этой цели я вместе с коллекторной пластиной и промежуточным изоляционным материалом использую слюду, асбестовую бумагу, другие диэлектрические вещества, желательно невоспламеняемые, которые я располагаю на поверхности коллектора, перед щеткой и позади нее.

Прилагаемые чертежи существенно облегчат понимание моего изобретения.

На рисунке 1 представлен разрез коллектора с асбестовым изолирующим приспособлением, на рисунке 2 две пластинки из слюды с задней поверхности щетки.

На рисунке 1 С означает коллектор и промежуточный изолирующий материал, В В – щетки, (1с1 – листы асбестовой бумаги или другого подходящего материала. Ff – пружины, давление которых может регулироваться при помощи винтов дд. На рисунке 2 представлена простейшая конструкция с двумя пластинами из слюды или подобного материала. Очевидно, что при разъединении сегмента коллектора со щеткой образованию дугового разряда будет препятствовать промежуточный диэлектрический слой, контактирующий с диэлектриком щетки.

Мое же изобретение предполагает различные способы его реализации, ибо оно, в широком плане, сводится к введению твердого диэлектрика на поверхность коллектора, благодаря чему искрение полностью или частично прекращается. Я отдаю предпочтение асбестовой бумаге или ткани, пропитанной оксидом цинка, магния, циркония или иным подходящим веществом. Поскольку бумага и ткань являются мягким материалом, они одновременно служат для очистки и полировки коллектора; слюда или подобный ей минерал используются мной, поскольку представляют собой изолятор или плохой проводник электричества. Это устройство может быть применено в любой электрической машине, в которой используются скользящие контакты.

Формула изобретения:

1. Комбинация коллекторных пластин и изоляционного материала и щеток динамоэлектрической машины с твердым изолятором или плохим проводником, располагаемым на поверхности коллектора рядом с краем щетки.

2. Комбинация контактных пружин или щеток с твердым изоляционным материалом или плохим проводником в электрической машине со скользящими контактами и промежуточным изолятором.

Никола Тесла.

Свидетели: Дж. Т. Пинкни, У.Г. Мотт.

Н. ТЕСЛА

КОЛЛЕКТОР ДИНАМОЭЛЕКТРИЧЕСКОЙ МАШИНЫ

26 ЯНВАРЯ 1886 Г.

2

Переменный ток

Суть переменного тока
DC — постоянный ток, AC — переменный ток
Прежде чем научиться использовать переменный ток, его необходимо сначала получить. В общем-то о переменном токе физики знали уже давно (со времён открытия электромагнитной индукции) и Тесла его как таковой не открывал, но тогда все полагали, что переменный ток — это попросту «мусор», который вряд ли как-то получится использовать. Тесла же был другого мнения и сразу увидел весь потенциал переменного тока.

Постоянный ток непрерывно течёт в одном направлении; переменный ток меняет своё направление 50 или 60 раз в секунду и у него можно изменять напряжение до высоких уровней, минимизируя при этом потери мощности на больших расстояниях. Позже напряжение переменного тока можно понижать, чтобы использовать его на заводах или в жилых домах. Тесла понял, что будущее принадлежит переменному току.

Тесла описал свои двигатели и электрические системы в статьей «Новая система двигателей переменного тока и трансформаторов», которую он презентовал в Американском институте инженеров-электриков в 1888 году. Именно тогда Джордж Вестингауз заинтересовался разработками Теслы, и однажды он посетил его лабораторию и поразился увиденному.

Никола Тесла построил модель многофазной системы из понижающих и повышающих трансформаторов переменного тока, а также двигателя переменного тока. Так началось партнёрство Ветсингауза и Теслы. Позже Никола Тесла получил 40 патентов на свои изобретения в США, а Вестингауз выкупил их все, чтобы обеспечить себя богатством, а Америку переменным током.

Ниже мы как раз и поговорим об этих машинах и о том, как в США внедрялась многофазная система электроснабжения.

Синусоидальный ток

Наиболее распространён в электротехнике синусоидальный ток

. Это периодический переменный ток, изменяющий по закону синуса:i=Im·sin(ωt ψ),

где i – значение тока в любой момент времени t

– мгновенное значение синусоидального тока;

ω= 2πf= 2πf/T, гдеω– угловая частота;ψ– начальная фаза переменного синусоидального тока (фаза в момент времениt= 0).

Наибольшее положительное или отрицательное значение переменного тока называют амплитудой

График переменного синусоидального тока представляет собой синусоиду

Два синусоидальный тока совпадают по фазе, если они одновременно достигают максимальных и нулевых значений. Если же их фазы различны, то говорят, что токи сдвинуты по фазе.

Наиболее широко в электротехнике применяется трёхфазный ток

.Трёхфазная системасостоит из трёх однофазных электрических цепей. Электродвижущие силы, действующие в каждой из них, имеют одинаковую частоту, но сдвинуты по фазе относительно друг друга на 1200.

В электротехнике однофазную электрическую цепь, входящую в состав многофазовой цепи называют фазой

. Если все фазы электрически соединены между собой, то такую систему называютэлектрически связанной. Фазы в трёхфазной системе могут соединяться «треугольником», «звездой с нейтральным проводом» и «звездой без нейтрального провода».

Если мы сложим все мгновенные значения (положительные и отрицательные) переменного синусоидального тока за период, то получим алгебраическую сумму, равную нулю. Но в таком случае и среднее значение тока также равно нулю. Следовательно, это значение нельзя использовать для измерения синусоидального тока.

Как же определить величину переменного синусоидального тока?

Переменный синусоидальный ток, как и постоянный, обладает тепловым действием. Сравнив его тепловое действие с тепловым действием постоянного тока, можно судить о его величине.

Согласно закону Джоуля-Ленца количество теплоты Q

, выделяемое на участке электрической цепи за времяtпри прохождении тока, определяется следующей формулой:

Q =I2Rt,

где I

– величина тока;R– электрическое сопротивление.

Если два тока, постоянный и переменный, протекая через одинаковые по величине сопротивления, за одинаковое время выделяют одинаковое количество тепла, то они считаются эквивалентными по тепловому действию

Величина постоянного тока, который произвёл такое же количество теплоты, что и переменный ток за такое же время, называется действующим значением переменного синусоидального тока

Величина действующего значения синусоидального тока связана с его амплитудой соотношением:

Оцените статью
Радиокоптер.ру
Добавить комментарий