Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр Машинки

Что такое квадрокоптер и для чего это надо

Мультироторы, они же мультикоптеры или просто коптеры, — это беспилотные летательные аппараты, предназначенные для развлечения, съемки фото и видео с воздуха или отработки автоматизированных систем.

Коптеры обычно различают по числу используемых моторов — начиная от бикоптера с двумя моторами (как GunShip из фильма «Аватар») и заканчивая октакоптером с восемью. На самом деле число моторов ограничено только твоей фантазией, бюджетом и возможностями полетного контроллера.

Классическим вариантом является квадрокоптер с четырьмя моторами, расположенными на перекрещивающихся лучах. Такую конфигурацию еще в 1920 году попытался соорудить француз Этьен Омишен (Étienne Oehmichen), и в 1922 году у него это даже получилось. По сути, это самый простой и дешевый вариант сделать летательный аппарат, способный без особых проблем поднимать в воздух небольшие камеры вроде GoPro.

3d печать корпуса для квадрокоптера mavic

Хотим представить выполненную работу по 3D печати деталей для квадрокоптера Mavic. Это новая редакция квадрокоптера Mavic под другой контроллер.

3D печать в Архангельске выполнена Центром 3D технологий «3DELO». Для работы использовались материалы компании «REC». 3D печать производилась ABS пластиком. Огромное спасибо коллегам за надежный и качественный пластик для 3D принтера. С ним всегда спокойно и уверенно на любых 3D принтерах. Рекомендуем данные материалы для изготовления функциональных и качественных деталей.

Так выглядят квадрокоптеры Mavic Pro. мы же представим вашему вниманию несколько другой и миниатюрный летательный беспилотный аппарат – квадрокоптер. Mavic – портативный квадрокоптер с набором современных технологий. Корпус нашего квадрокоптера распечатан на 3D принтере, мозги DJI NAZA Lite, моторы 2213 935kv Emax, регулятор скорости DYS XSD20A DShot , батарея 3с 2200 mAh.

Смотрите про коптеры:  Steam Community :: Guide :: Технологии

Дрон Mavic по двигателям не отстает от предыдущей модели Phantom. Управление полётом теперь возможно на расстоянии более 2-5 километров – благодаря системе передачи сигнала. Можно с уверенностью говорить о том, что квадрокоптер Mavic превосходит многих своих предшественников. Заметив препятствие, Mavic может принять решение облететь его или остановиться и зависнуть в воздухе. И иногда можно не беспокоиться за его сохранность. Ну и еще много различных дополнительных функций. Кто увлечен данной темой, оценят все плюсы данного аппарата. А для простого читателя будет интересна идея применения 3D печати для практических целей. Экономия средств при выполнении корпуса с помощью 3D печати – очевидна. Внесение изменений в модель – огромное преимущество, по сравнению с покупными элементами. Возможность быстрой замены и выбора цвета и материала тоже большой плюс.

Ну а теперь о процессе. ABS пластик в 3DELO был подобран для каждой детали в соответствии с планируемым внешним видом. Все тщательно разложено и настроено для качественного заполнения деталей, без ущерба весу летательного аппарата и прочности элементов конструкции. Ну и в полет…. пока печать на 3D принтере, а потом и в небо!

Дальше множество фото деталей.

Монтаж внутренностей прошел без каких-либо сложностей.

Ну и так выглядит квадрокоптер Mavic в сборе.

Все смонтировано, все подошло. Проверено – летает! Кому интересно, есть видео.

Коллектив 3DELO в г. Архангельск желает всем удовольствия от проделанной работы. Пусть ваш результат радует тех, кто вас окружает. Вносите свой вклад в развитие 3D технологий.

Подробную информацию по данной работе, выполненной на 3D принтере вы найдете по этой ссылке.

3d-печать деталей для коптеров на заказ в москве • работаем 24/7

Защитный бокс экшн-камеры GoPro 9 или GoPro 10 с универсальным креплением типа «Yozgik».

Увы, но GoPro 9 или 10 являются самыми тяжёлыми любительскими экшн-камерами, производитель которых явно не брал в расчёт интересы FPV-пилотов.

Если вы занимаетесь съёмками и летаете в стиле Cinematic, и падение дрона для Вас является редкой нештатной ситуацией, то вы можете не заморачиваться и крепить свою камеру на дрон за стандартные уши без всякой защиты, и не утяжелять камеру дополнительным печатным боксом. Кроме того, вы всегда можете, в зависимости от условий съёмки и задания режиссера, изменить угол наклона камеры.

Смотрите про коптеры:  Закон о квадрокоптерах в РФ 2020. Нужно ли регистрировать квадрокоптер? - Все о квадрокоптерах | PROFPV.RU

Если же вы являетесь активным фристайловым пилотом и жить не можете без трюков и эффектных кадров, то наш бокс сделан именно для Вас. Наверняка вы уже чётко оцениваете ту скорость, на который вы выполняете трюки, и Вам не нужно так часто менять углы наклона камеры. Бокс надёжно крепиться на раме под фиксированным углом и вы можете не переживать за вырванные с корнем уши из камеры, или уши какого-то другого напечатанного бокса при очередной встрече с землёй. Поверьте, 200 грамм, закрепленные на раме за любые уши, даже на скорости в 40 км/ч, вырываются с корнем «на ура».

Для вашей рамы мы можем сделать крепление данного бокса с любым углом наклоном. Если у Вас несколько коптеров, то вы лёгкостью можете переставлять данный бокс с одного дрона на другой, и Вам не потребуется вынимать из него камеру.

Авантюра

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / ХабрСергей одобряет авантюрный эксперимент. Джефф Безос тоже

Сергей Савин — старший научный сотрудник, доцент, серьезный ученый с кандидатской в 25 лет и множеством рейтинговых публикаций. Он один из отцов-основателей тенсегрити-робототехники в УИ, получил несколько грантов на развитие тенсегрити в робототехнике.

Дмитрий, Олег и Хэни собирают первого тенcодрона (что-то напоминает). Дмитрий Девитт

— научный сотрудник и аспирант Университета и тот, кто применил самые современные технологии — карбоновые трубки и кевларовые нити, 3D-печать карбоном и мягким пластиком, все реализовал и заставил летать. 

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Процесс работы по сборке тенсодронаКак мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Ура. получилось!

Безопасность

Все новички, думая о безопасности, вспоминают AR.Drone и его защиту винтов. Это хороший вариант, и он работает, но только на мелких и легких аппаратах, а когда вес твоего коптера начинает приближаться к двум килограммам или давно перевалил за эту цифру, то спасти может только прочная железная конструкция, которая будет весить очень много и, как ты понимаешь, сильно уменьшит грузоподъемность и автономность полета.

Поэтому лучше сперва тренироваться подальше от людей и имущества, которое можно повредить, а уже по мере улучшения навыков защита станет и не нужна. Но даже если ты пилот со стажем, то не забывай о технике безопасности и продумывай возможные негативные последствия твоего полета при нештатных ситуациях, особенно при полетах в людных местах.

Смотрите про коптеры:  Автожиры MAGNI GYRO - официальный сайт в РФ

Не стоит забывать, что сбой контроллера или канала связи может привести к тому, что аппарат улетит от тебя далеко, и тогда для поиска может пригодиться GPS-трекер, установленный заранее на коптер, или же простая, но очень громкая пищалка, по звуку которой ты сможешь определить его местоположение.

Бортовой компьютер и сенсоры

Выбор полетных контроллеров для коптеров очень велик — начиная от простого и дешевого KapteinKUK и нескольких open source проектов под Arduino-совместимые контроллеры до дорогого коммерческого DJI Wookong. Если ты настоящий хакер, то закрытые контроллеры тебя не должны сильно интересовать, в то время как открытые проекты, да еще и основанные на популярной ардуинке, привлекут многих программистов. О возможностях любого полетного контроллера можно судить по используемым в нем датчикам:

• гироскоп позволяет удерживать коптер под определенным углом и стоит во всех контроллерах; • акселерометр помогает определить положение коптера относительно земли и выравнивает его параллельно горизонту (комфортный полет); • барометр дает возможность удерживать аппарат на определенной высоте.

На показания этого датчика очень сильно влияют потоки воздуха от пропеллеров, поэтому стоит прятать его под кусок поролона или губки; • компас и GPS вместе добавляют такие функции, как удержание курса, удержание позиции, возврат на точку старта и выполнение маршрутных заданий (автономный полет).

К установке компаса стоит подойти внимательно, так как на его показания сильно влияют расположенные рядом металлические объекты или силовые провода, из-за чего «мозги» не смогут определить верное направление движения; • сонар или УЗ-дальномер используется для более точного удержания высоты и автономной посадки; • оптический сенсор от мышки используется для удержания позиции на малых высотах; • датчики тока определяют оставшийся заряд аккумулятора и могут активировать функции возврата на точку старта или приземление.

Сейчас существует три основных открытых проекта: MultiWii, ArduCopter и его портированная версия MegaPirateNG. MultiWii самый простой из них, для запуска требует Arduino с процессором 328p, 32u4 или 1280/2560 и хотя бы одним датчиком-гироскопом. ArduCopter — проект, напичканный всевозможным функционалом от простого висения до выполнения сложных маршрутных заданий, но требует особого железа, основанного на двух чипах ATmega.

MegaPirateNG — это клон ArduCopter, который способен запускаться на обычной ардуине с чипом 2560 и минимальным набором датчиков из гироскопа, акселерометра, барометра и компаса. Поддерживает все те же возможности, что и оригинал, но всегда догоняет в развитии.

Продвинутый девяти- канальный пульт
Продвинутый девяти-
канальный пульт

С железом для открытых проектов аналогичная ситуация, как и с рамами для коптера, то есть ты можешь купить готовый контроллер или собрать его самостоятельно с нуля или на основе Arduino. Перед покупкой стоит всегда обращать внимание на используемые в плате датчики, так как развитие технологий не стоит на месте, а старье китайцам как-то надо распродать, к тому же не все сенсоры могут поддерживаться открытыми прошивками.

Наконец, стоит упомянуть еще один компьютер — PX4, отличающийся от клонов Arduino тем, что у него есть UNIX-подобная операционная система реального времени, с шеллом, процессами и всеми делами. Но надо предупредить, что PX4 — платформа новая и довольно сырая. Сразу после сборки не полетит.

Настройка полетных параметров, как и программы настройки, очень индивидуальна для каждого проекта, а теория по ней могла бы занять еще одну статью, поэтому вкратце: почти все прошивки для мультикоптеров основаны на PID-регуляторе, и основной параметр, требующий вмешательства, — пропорциональная составляющая, обозначаемая как P или rateP.

Безопасность

Все новички, думая о безопасности, вспоминают AR.Drone и его защиту винтов. Это хороший вариант, и он работает, но только на мелких и легких аппаратах, а когда вес твоего коптера начинает приближаться к двум килограммам или давно перевалил за эту цифру, то спасти может только прочная железная конструкция, которая будет весить очень много и, как ты понимаешь, сильно уменьшит грузоподъемность и автономность полета. Поэтому лучше сперва тренироваться подальше от людей и имущества, которое можно повредить, а уже по мере улучшения навыков защита станет и не нужна. Но даже если ты пилот со стажем, то не забывай о технике безопасности и продумывай возможные негативные последствия твоего полета при нештатных ситуациях, особенно при полетах в людных местах. Не стоит забывать, что сбой контроллера или канала связи может привести к тому, что аппарат улетит от тебя далеко, и тогда для поиска может пригодиться GPS-трекер, установленный заранее на коптер, или же простая, но очень громкая пищалка, по звуку которой ты сможешь определить его местоположение. Настрой и заранее проверь функцию fail safe твоего полетного контроллера, которая поможет приземлиться или вернуть коптер на точку старта при потере сигнала с пульта.

Гексакоптер

  • Описание: «Гексакоптер» имеет шесть лучей, каждый из которых соединен с мотором. Передней частью гексакоптера принято считать сторону стыка двух лучей, но также передом может считаться и продольный луч.
  • Преимущества: При необходимости, конструкция гексакоптера позволяет легко добавить два дополнительных луча и мотора, что позволит увеличить суммарную тягу, в следствии чего дрон сможет поднять больше полезной нагрузки. В случае отказа одного из моторов, допускается вероятность, что дрон сможет осуществить мягкую посадку, а не разбиться. Модульная конструкция рамы. Почти все полётные контроллеры поддерживают эту конфигурацию.
  • Недостатки: Громоздкая и дорогостоящая конструкция. Дополнительные двигатели и детали увеличивают вес коптера, соответственно чтобы получить туже продолжительность полёта, что и у квадрокоптера, необходимо устанавливать более ёмкие АКБ.

Дополнительные соображения

  • Подвес — чаще всего используется для стабилизации камеры (FPV/Аэросъёмка). Как правило устанавливается под рамой в соответствии с центром тяжести БПЛА. Может крепиться напрямую к раме, либо посредством направляющих. Для стабилизации изображения рекомендуется использовать двух, либо трёх осевые подвесы. Требует увеличения длинны посадочных опор.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

  • Полезная нагрузка (транспортировочная) — в любительской сфере является чем-то вроде роскоши, так как любой дополнительный вес не только сокращает время полёта, но и приводит к отказу в использовании дополнительных элементов, которые могли бы добавить беспилотнику ключевых функций. При проектировании следует понимать, что транспортировочный кейс должен быть максимально лёгким и в тоже время прочным, а также сам груз должен жёстко крепиться, исключая любое перемещение в полёте.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

  • Посадочные опоры — несмотря на то, что некоторые БПЛА приземляются непосредственно на раму (как правило исключаются для снижения веса), применение в конструкции посадочных опор обеспечит зазор между нижней частью БПЛА и неровной поверхностью, а также в случае жёсткой посадки принимают удар на себя, увеличивая шансы на спасение таких важных элементов дрона как камера, подвес, АКБ и рама.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

  • Монтаж — несмотря на то, что проектировать и изготавливать беспилотник значительно проще, чем обычный вертолёт, расположение каждого элемента следует продумать в самом начале процесса проектирования.

Общие рекомендации по монтажу:

  1. При создании рамы с нуля, важно, обеспечить точное расположение четырёх монтажных отверстий посредством которых осуществляется крепёж моторов к раме.
  2. Большинство моторов для рам размером от 400 — 600мм имеют одинаковую схему монтажных отверстий, что позволяет использовать раму от одного производителя, а моторы от другого.
  3. Расположение всех дополнительных компонентов в идеале должно быть симметрично относительно одной оси, что в последствии поможет облегчить поиск и регулировку центра масс беспилотника.
  4. В идеале контроллер полёта должен быть расположен в центре круга (и как таковой в центре масс) соединяющего все моторы.
  5. Контроллер полёта обычно крепится к раме при помощи стоек, резиновых демпферов или двухстороннего скотча.
  6. Многие производители используют одинаковое расположение монтажных отверстий для контроллера полёта (например, квадрат 35мм либо 45мм), но как токового «промышленного стандарта» не существует.
  7. АКБ достаточно тяжелая, и если центр масс вашей сборки немного сдвинулся, вы можете отрегулировать его переместив слегка батарею.
  8. Убедитесь, что крепление АКБ немного «играет», но в тоже время обеспечивает надёжную фиксацию батареи.
  9. Ремни с липучей основой часто используются для фиксации АКБ, тем не менее не будет лишним добавить двухсторонний скотч между батареей и рамой.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Дроны падают

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Просто потому что летают. Системы управления, моторы, датчики, автопилоты, бортовые компьютеры и софт — все это разработчики стараются делать как можно надежнее, но риск разбить коптер остается. А если это опытный образец, то сразу нужно изготавливать несколько (штук или десятков?) для отладки. Кроме внутренних факторов, очевидно, остаются и внешние: ветер, пассивные препятствия, активное воздействие.

Вряд ли кто-то будет спорить, дроны падают, сталкиваются, переворачиваются.Можно стараться этого избегать, можно к этому подготовиться. Что лучше? Решать разработчику, пользователю и законодателю.

https://www.youtube.com/watch?v=5UV25lRslOY

Я за совместное применение обоих подходов. Но в этой статье сконцентрируемся на том, как избежать последствий падения или столкновения БПЛА.

Защитные конструкции

Наиболее прямолинейный подход избежать последствий падения или столкновения БПЛА — защитная клетка и прочие защитные конструкции. Здесь две задачи — защищать дрон от повреждений и защищать среду, где работает дрон, и людей в ней от дрона.

Базовый вариант конструкции, относящейся скорее к защите людей от дрона, — защита пропеллера.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Дрон AR.Drone 2.0 с защитой пропеллеров. Источник

Есть еще забавные решения, вдохновленные оригами, со складными гибкими конструкциями защиты пропеллеров (и даже конструкции рамы), развитие которым дала группа профессора Дарио Флореано в EPFL.

Превалирующей конструкцией защиты самого дрона (а вместе с тем и людей от него) является защитная клетка. Сам квадрокоптер находится внутри клетки.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Дрон Clover от российской COEX

Российская компания COEX делает дроны для учебных целей, которые по умолчанию имеют защиту пропеллеров, а опционально — защитную клетку.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Дрон Flyability ELIOS

Швейцарская (Швейцария — столица дроностроения?) компания Flyability — выпускает, пожалуй, самый коммерчески успешный коптер ELIOS с защитной клеткой для выполнения инспекций внутри помещений. Оригинальность конструкции состоит в креплении защитной клетки к раме коптера на подвижном подвесе с возможностью стабилизации.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Дрон Dronistics

Стартап Dronistics из EPFL (опять Швейцария, это выходцы из группы Dario Floreano) предлагает дрон со складной клеткой для безопасной доставки грузов.

Недостатком таких дронов является увеличение массы конструкции — нужно носить с собой защитную клетку и элементы крепления к БПЛА. Стремление снизить массу защитной конструкции приводит к снижению ее прочности.

И снова ресерч


Потенциал конструкции тенсегрити-дрона гораздо больше простого дрона. 

Помните Foldable Drone из

выше? А

Так вот, если активно изменять длины стержней или натяжения тросов тенсегрити-дрона, можно управлять его конфигурацией (или, проще говоря, формой)!

Получается Foldable Morphing Tensodrone. Активно ведем исследования в этой области.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Тенсодрон с изменяемой в полете геометрией Университета Иннополис (концепт)

Применение тенсегрити для летательного аппарата открывает новые исследовательские задачи. Прототип конструкции уже сейчас показывает, что идея работает и её можно применять для защиты БПЛА.

Камера

Ух, вот это самая жесть. Камера не всегда нужна, но если она нужна, то нужно внимательно подойти к её выбору. В качестве записывающей камеры стоит использовать экшн камеры- GoPro или её Китайские аналоги (они не сильно уступают в качестве видео, если даже не превосходят «фирму»). Нужно ориентироваться на вес, и на угол обзора. С весом всё понятно, а вот про угол расскажу.

Хочется, чтобы камера снимала красоты мира, но не снимала лучи коптера. Если ты промахнулся и это произошло, то придётся выбрать из двух плохих вариантов.

Опустить камеру так, чтоб она не задевала пропеллеры. Опускать, скорее всего, придётся сильно, и это вызовет массу проблем с взлётом и посадкой, а также с маневренностью, из-за смещённого центра тяжести.

Вынести камеру вперёд. Тоже беда. Снова сместится центр тяжести (в этом случае можно попытаться уравновесить при помощи АКБ). Ещё сильнее утяжелит конструкцию, ибо придётся придумывать очень мощный фиксатор. Иначе никакими бюджетными виброгасителями делу не поможешь, и эффект желе обеспечен.

Можно попробовать использовать ориентировочную формулу L= 2 * tg (A /2) х D, где:

  • L — Область обзора камеры на расстоянии D
  • Α — Угол обзора камеры
  • D – расстояние до объекта (в нашем случае, до пропеллеров)

Ты получишь диаметр круга, но так как камера снимает прямоугольное изображение, то этот диаметр будет диагональю. Там уж можно примерно прикинуть- задевает, или нет.

Компоненты выбираем, руководствуясь необходимым результатом. Не нужно брать самое лучшее, если в этом нет необходимости. Возможности своей сборки ты можешь приблизительно рассчитать при помощи калькулятора.

Контроллер

Контроллер, это мозг твоего мультикоптера. Их можно разделить на два вида.

Универсальный: Например, DJI NAZA. Такой контроллер можно использовать с абсолютно любой сборкой. Будь то квадрокоптер, гексакоптер или октокоптер. Он не заточен под управление чем-то конкретным. На него можно подвесить кучу оборудования, он обладает многими функциями и датчиками.

Есть и минусы. Первый минус, это цена. Тот же DJI Naza-M V2 стоит 17 000 рублей. Второй минус- необходимость настройки. Для этого используется специальная программа, написанная под конкретный контроллер. Там можно заменить и отрегулировать практически всё, но это требует определённых сил, знаний и времени.

Специализированный: Как в последующем примере. Он уже заточен под работу с конкретной компоновкой коптера. Конечно, он даёт некоторый простор, но мощность на каждом двигателе вы не настроите. Стоит недорого, умеет мало. Самое то, для начала.

Материалы исполнения бпла/конструкция

Ниже приведены наиболее распространенные материалы исполнения используемые для изготовления рам мультироторных дронов, соответственно список не полный. В идеале рама должна быть жёсткой с минимально возможной передачей вибрации.

Поролон (Пена) — как единственный материал для изготовления рам БЛА используется редко, и, как правило, в комбинации с жёстким каркасом или усиленной конструкцией. Также может применяется в стратегических целях; в качестве защиты несущих винтов (пропеллеров), шасси, не редко выступает в качестве демпфера. Поролон может быть разных типов от мягкого до относительно жёсткого.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Дерево — если в приоритете дешевизна конструкции, то дерево — это отличный вариант, который значительно сократит время сборки и изготовления запасных частей. Древесина достаточно тверда и является проверенным временем материалом. Важно чтобы при изготовлении рамы использовалась идеально прямая древесина (без изгибов и деформации).

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Пластик — для большинства пользователей доступен только в виде пластиковых листов. Имеет тенденцию к изгибу и как таковой не идеален. Отлично подходит для изготовления защитного каркаса или шасси. Если вы рассматриваете возможность 3D печати, следует учитывать временной интервал изготовления (возможно проще купить комплект дооснащения UAV frame kit). 3D печать деталей отлично себя зарекомендовала при создании небольших квадрокоптеров.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Алюминий — доходит до потребителя в различных формах и размерах. Вы можете использовать листовой алюминий для исполнения корпуса, либо экструдированный алюминий для реализации лучей дрона. Алюминий не такой лёгкий, по сравнению с углеродным волокном или G10, зато цена и долговечность выступают главными преимуществами материала. Вместо разрушения или трещин, алюминий имеет склонность к изгибу. Для работы с материалом требуется только пила и дрель.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

G10 (разновидность стекловолокна) — не смотря на то, что внешний вид и основные свойства практически идентичны с карбоном (углеродным волокном), является менее дорогим материалом. В основном доступен в листовом формате и используется для реализации верхних и нижних пластин рамы. Также в отличии от углеродного волокна, G10 не блокирует радиочастотные волны.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

PCB (Печатная плата – пластина из диэлектрика) — по сути аналог стекловолокна, но в отличии от последнего всегда плоские. Иногда используется в качестве верхних и нижних пластин рамы, с целью уменьшения количества используемых деталей (например, плата распределения питания часто встроена в нижнюю панель). Рамы нано/мини квадрокоптеров могут быть исполнены из одной печатной платы включающей в себя всю электронную начинку.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Углеродное волокно — самый востребованный материал из-за лёгкого веса и высокой прочности. Процесс изготовления по прежнему исключительно ручной. Как правило серийно производятся простые формы, такие как плоские листы, трубчатые комплектующие; исполнение сложных трехмерных форм осуществляется на заказ.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Методические рекомендации

Шаг 1: Посмотрите, какие материалы и инструменты для их обработки имеются в вашем распоряжении.

  • Если арсенала ваших возможностей не хватает для реализации кастомной рамы или вы просто хотите получить профессиональную раму, подумайте о приобретении UAV frame kit.
  • Даже если рама исполнена с использованием необходимого инструмента и из основных материалов, она всё равно может иметь структурно слабые места вызывающие излишнюю вибрацию, либо смещение. Процесс изготовления требует острое зрение и опыт.
  • Изготавливая раму самостоятельно, продумайте крепёж всех необходимых элементов дрона; моторы, электроника и т.д.

Шаг 2: Перечислите все дополнительные (вспомогательные) части, которые вы планируете включить в сборку.

  • Это могут быть одно-, двух-, либо трех осевой подвес для камеры, парашют, бортовой мини компьютер, полезная нагрузка, дальнобойная электроника (как правило утяжеляет и увеличивает сборку), плавучие средства и т.д.
  • Полученный список дополнительных/вспомогательных частей позволит получить представление о размерах беспилотника и рассчитать общую массу.

Шаг 3: Поразмышляйте о предполагаемых размерах рамы.

  • Большая рама — необязательно большой потенциал дрона, и не факт, что рама меньших размеров сделает сборку дешевле.
  • Дрон построенный на раме размером от 400 — 600мм рекомендуется для начинающих.

Шаг 4: Спроектируйте, соберите и протестируйте раму.

  • Если вы приобрели комплект дооснащения (UAV frame kit), то вам не о чем беспокоится касательно прочности, жёсткости и сборки.
  • Если вы решили спроектировать и изготовить раму с нуля, важно будет проверить её прочность, вес, и убедится, сможет ли конструкция противостоять вибрации (минимальным изгибом).
  • Подумайте об использовании специализированного программного обеспечения для моделирования (многие из них бесплатны, например, Google Sketchup), чтобы спроектировать раму и убедиться в правильности выбранных размеров.

Теперь у вас есть рама и вы можете переходить к следующему уроку.

Питание и контроллеры питания

Капитан подсказывает: чем больше мощность мотора, тем больше батарейка ему нужна. Большая батарейка — это не только емкость (читай, время полета), но и максимальный ток, которая она отдает. Но чем больше батарейка, тем больше и ее вес, что вынуждает скорректировать наши прикидки относительно винтов и моторов.

На сегодняшний день все используют литий-полимерные батарейки (LiPo). Они легкие, емкие, с высоким током разрядки. Единственный минус — при отрицательных температурах работают плохо, но если их держать в кармане и подключать непосредственно перед полетом, то во время разряда они сами слегка разогреваются и не успевают замерзнуть. LiPo-элементы вырабатывают напряжение 3,7 В.

При выборе батареи стоит обращать внимание на три ее параметра: емкость, измеряемую в миллиампер-часах, максимальный ток разряда в емкостях аккумулятора (С) и число ячеек (S). Первые два параметра связаны между собой, и при их перемножении ты узнаешь, сколько тока сможет отдавать этот аккумулятор продолжительное время.

Например, твои моторы потребляют 10 А каждый и их четыре штуки, а батарея имеет параметры 2200 мА · ч 30/40C, таким образом, коптеру требуется 4 • 10 A = 40 A, а батарея может выдавать 2,2 A • 30 = 66 A или 2,2 А • 40 = 88 А в течение 5–10 секунд, что явно будет достаточно для питания аппарата.

Также эти коэффициенты напрямую влияют на вес аккумулятора. Внимание! Если тока будет не хватать, то в лучшем случае батарея надуется и выйдет из строя, а в худшем загорится или взорвется; это же может произойти при коротком замыкании, повреждении или неправильных условиях хранения и зарядки, поэтому используй специализированные зарядные устройства, аккумуляторы храни в специальных негорючих пакетах и летай с «пищалкой», которая предупредит о разрядке.

Число ячеек (S) указывает на количество LiPo-элементов в батарее, каждый элемент выдает 3,7 В, и, например, 3S-аккумулятор будет отдавать примерно 11,1 В. Стоит обращать внимание на этот параметр, так как от него зависят скорость оборотов моторов и тип используемых регуляторов.

Элементы батареи объединяют последовательно или параллельно. При последовательном включении увеличивается напряжение, при параллельном — емкость. Схему подключения элементов в батарее можно понять по ее маркировке. Например, 3S1P (или просто 3S) — это три последовательно подключенных элемента.

Однако моторы подключаются к батарее не напрямую, а через так называемые регуляторы скорости. Регуляторы скорости (они же «регули» или ESC) управляют скоростью вращения моторов, заставляя твой коптер балансировать на месте или лететь в нужном направлении.

Большинство регуляторов имеют встроенный стабилизатор тока на 5 В, от которого можно питать электронику (в частности, «мозг»), можно использовать отдельный стабилизатор тока (UBEC). Выбираются контроллеры скорости исходя из потребления мотором тока, а также возможности перепрошивки.

Обычные регули довольно медлительны в плане отклика на поступающий сигнал и имеют множество лишних настроек для коптеростроительства, поэтому их перепрошивают кастомными прошивками SimonK или BLHeli. Китайцы и тут подсуетились, и часто можно встретить регуляторы скорости с уже обновленной прошивкой.

Не забывай, что такие регули не следят за состоянием аккумулятора и могут разрядить его ниже 3,0 В на банку, что приведет к его порче. Но в то же время на обычных ESC стоит переключить тип используемого аккумулятора с LiPo на NiMH или отключить уменьшение оборотов при разрядке источника питания (согласно инструкции), чтобы под конец полета внезапно не отключился мотор и твой беспилотник не упал.

Моторы подключаются к регулятору скорости тремя проводами, последовательность не имеет значения, но если поменять любые два из трех проводов местами, то мотор будет вращаться в обратном направлении, что очень важно для коптеров.

Два силовых провода, идущих от регулятора, надо подключить к батарейке. НЕ ПЕРЕПУТАЙ ПОЛЯРНОСТЬ! Вообще, для удобства регуляторы подключают не к самой батарейке, а к так называемому Power Distribution Module — модулю распределения энергии. Это, в общем-то, просто плата, на которой припаяны силовые провода регуляторов, распаяны разветвления для них и припаян силовой кабель, идущий к батарее.

Подробнее про конструкцию прототипа

Конструкция первого прототипа дрона получилась такая:

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Конструкция прототипа тенсодрона Университета Иннополис

Использована базовая шестистержневая конструкция тенсегрити. В отличие от квадрокоптеров с жесткой рамой у нас две пары двигателей с винтами установлены на различных балках. Также ни один из них не соединен жестко с автопилотом, который расположен на нижней балке.

Бортовая электроника и электромеханические компоненты прототипа дрона включают в себя:


Тросы сделаны из кевларового волокна с изготовленными на заказ пружинами. Стержни изготовлены из карбоновых трубок. Торцевые колпачки и другие мелкие детали напечатаны на 3D-принтере.

Пошаговая инструкция по сборке

Давайте условимся на том, что ты прочитал нашу статью про выбор набора для сборки квадрокоптера ,и воспользовался ценнейшем советом – брать раму с платой распределения. Если нет, то провода подключаем сразу к модулю управления.

Для примера рассмотрим сборку из следующих комплектующих:

  • Каркас квадрокоптера Diatone Q450 Quad 450 V3 PCB Quadcopter Frame Kit 450mm
  • Мотор DYS D2822-14 1450KV Brushless Motor. 4 штуки
  • Регулятор DYS 30A 2-4S Brushless Speed Controller ESC Simonk Firmware
  • Пропеллеры DYS E-Prop 8×6 8060 SF ABS Slow Fly Propeller Blade For RC Airplane
  • Модуль управления квадрокоптером KK2.1.5 kk21evo
  • Аккумуляторная батарея литий-полимерного типа Turnigy nano-tech 2200mah 4S ~90C Lipo Pack
  • Устройство для зарядки аккумуляторов Hobby King Variable6S 50W 5A
  • Коннектор для подключения аккумулятора XT60 Male Plug 12AWG 10cm With Wire
  • Коннекторы 20 Pairs 3.5mm Bullet Connector Banana Plug For RC Battery / Motor
  • Пульт управления квадрокоптером Spektrum DX6 V2 with AR610 Receiver (в комплекте с приёмником и передатчиком)

Примерная цена- 20 000 рублей

Размазываем компоненты по столу ровным слоем, и начинаем.

Проблемы управления

Основная проблема управления по сравнению с обычным жестким дроном — вибрации, которые, во-первых, больше по амплитуде, во-вторых, разные для контроллера и различных двигателей, т.к. они установлены на различных балках (хотя это же может быть и плюсом — виброразвязка).

Ранние тесты тенсодрона на подвесе: вибрации (извините за вертикальное видео)Ранние тесты тенсодрона в полете: вибрации

Мы не одиноки

Оказывается, у нас был конкурент.

Еще в начале (почти год назад), когда мы делали прототип, мы нашли это видео от ребят из Imperial College London:

 

Авторы пришли к той же идее, что и мы: применение тенсегрити для дронов — это интересно. 

Т.к. никаких подробностей по конструкции и, тем более, прототипа представлено не было, свои работы мы продолжили.

Уже потом, когда у нас был летающий образец, мы получили отчет той же группы: 

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Отчет Hayden Cotgrove, Christopher Turner, Zachary Yamaoka Tensegrity Drones. Ссылка уже не работает

Во-первых, прототип у них не полетел. Во-вторых, их конструкция — это жесткий дрон внутри тенсегрити-клетки, у нас же элементы дрона встроены в тенсегрити-структуру, которая тем самым является и фреймом и клеткой одновременно. Таким образом, здесь как концептуальные проблемы, так и проблемы качественной реализации.

Возвращаемся к проблемам управления и вибрации. Вот, что написано в отчете Hayden Cotgrove, Christopher Turner, Zachary Yamaoka:

Results
The drone was able to hover for short periods, thus proving that it is possible for tensegrity drones to fly. However, the propellers struggled to lift the drone for a couple of reasons:

Данные проблемы мы решаем с двух сторон — улучшением конструкции для уменьшения вибраций при полете и разработкой алгоритмов управления и оценивания состояния с целью подавления вибраций и более качественного управления, в том числе с учетом дополнительных данных от IMU датчиков на балках и динамической модели тенсегрити-структуры.

Падение на пол с последующим взлетом, в помещении (без монтажа)

Тенсегрити

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / ХабрТенсегрити-стол. Источник

Тенсегрити — способность каркасных конструкций использовать взаимодействия работающих на сжатие цельных элементов с работающими на растяжение составными элементами для того, чтобы каждый элемент действовал с максимальной эффективностью и экономичностью (Вики).

Известно множество современных применений такого подхода в архитектуре, откуда он и появился, прежде всего при проектировании мостов.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр
Самый большой в мире мост, выполненный в стиле тенсегрити, Австралия. Источник

Тенсегрити в робототехнике

Одно из старейших направлений робототехники — промышленные манипуляторы — сейчас переживает новую стадию своего развития, связанную с т.н. коллаборативной робототехникой. В речи специалистов в этой области можно с большой частотой услышать два термина — stiffness и compliance.

В промышленной робототехнике термин compliance относится к гибкости и податливости. Неподатливый (non-compliant), жесткий (stiff) робот — это устройство, которое работает независимо от того, какие внешние силы на него воздействуют. Энд-эффектор робота будет каждый раз следовать точно по одной и той же траектории.

С другой стороны, энд-эффектор податливого робота может двигаться по различным траекториям для выполнения задачи и прилагать различные усилия к объекту. Например, робот может схватить яйцо, не раздавив его. Управляемая жесткость лежит в основе коллаборативной робототехники.

Идеи применения тенсегрити в робототехнике идут как раз из коллаборативной и «мягкой» (“soft”) робототехники. Тенсегрити структуры — легкие, ударопрочные и дают возможность контролировать их жесткость (податливость) и конфигурацию (форму).

Тенсегрити-роботы в университете иннополис

В УИ мы разрабатываем математический аппарат для моделирования, проектирования и управления робототехническими системами с напряженно-связанными структурами с переменной жесткостью (это и есть тенсегрити). Это фундаментальная работа, применение которой можно найти в самых разных роботах, например, тенсегрити-манипуляторах или шагающих роботах.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / ХабрТенсегрити-манипулятор и выпускник и научный сотрудник УИ Олег Балахнов

Олег первым у нас начал прототипировать тенсегрити-роботов — сначала из деревянных палочек и резинок. Фото конструкции из палочек для суши, пожалуй, тоже еще хранит история чатов.

Теория полета

В теории полета (аэродинамике) принято выделять три угла (или три оси вращения), которые задают ориентацию и направление вектора движения летательного аппарата. Проще говоря, летательный аппарат куда-то «смотрит» и куда-то двигается. Причем двигаться он может не туда, куда «смотрит».

Три эти угла принято называть крен, тангаж и рыскание. Крен — это поворот аппарата вокруг его продольной оси (оси, которая проходит от носа до хвоста). Тангаж — это поворот вокруг его поперечной оси (клюет носом, задирает хвост). Рыскание — поворот вокруг вертикальной оси, больше всего похожий на поворот в «наземном» понимании.

schema
Основные маневры (слева направо): движение по прямой, крен/тангаж и рыскание

В классической схеме вертолета основной винт при помощи автомата перекоса лопастей управляет креном и тангажем. Так как основной винт обладает ненулевым сопротивлением воздуха, у вертолета возникает вращающий момент, направленный в сторону, противоположную вращению винта, и, чтобы его скомпенсировать, у вертолета есть хвостовой винт.

Изменяя производительность хвостового винта (оборотами или шагом), классический вертолет управляет своим рысканием. В нашем же случае все сложнее. У нас есть четыре винта, два из них вращаются по часовой стрелке, два — против часовой. В большинстве конфигураций используются винты с неизменяемым шагом и управлять можно только их оборотами.

Если мы увеличим обороты одного винта, вращающегося по часовой стрелке, и уменьшим обороты другого винта, вращающегося по часовой стрелке, то мы сохраним общий момент вращения и рыскание по-прежнему будет нулевым, но крен или тангаж (в зависимости от того, где мы сделаем ему «нос») изменятся.

А если мы увеличим обороты на обоих винтах, вращающихся по часовой стрелке, а на винтах, вращающихся против часовой стрелки, уменьшим (чтобы сохранить общую подъемную силу), то возникнет вращающий момент, который изменит угол рыскания. Понятное дело, что все это будем делать не мы сами, а бортовой компьютер, который будет принимать сигнал с ручек управления, добавлять поправки с акселерометра и гироскопа и крутить винтами, как ему надо.

Для того чтобы спроектировать коптер, необходимо найти баланс между весом, временем полета, мощностью двигателей и другими характеристиками. Все это зависит от конкретных задач. Все хотят, чтобы коптер летал выше, быстрее и дольше, но в среднем время полета составляет от 10 до 20 минут в зависимости от емкости аккумулятора и общего полетного веса.

Стоит запомнить, что все характеристики связаны между собой и, к примеру, увеличение емкости аккумулятора приведет к увеличению веса и, как следствие, к уменьшению времени полета. Чтобы узнать, сколько примерно твоя конструкция будет висеть в воздухе и сможет ли вообще оторваться от земли, существует хороший онлайн-калькулятор ecalc.ch.

Но прежде чем вбивать в него данные, нужно сформулировать требования к будущему аппарату. Будешь ли ты устанавливать на аппарат камеру или другую технику? Насколько быстрым должен быть аппарат? Как далеко тебе нужно летать? Давай посмотрим на характеристики различных компонентов.

PX4 — бортовой ком- пьютер с полноценной UNIX-системой
PX4 — бортовой компьютер с полноценной UNIX-системой

Типы рам бпла

Трикоптер

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Квадрокоптер

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Гексакоптер

  • Описание: «Гексакоптер» имеет шесть лучей, каждый из которых соединен с мотором. Передней частью гексакоптера принято считать сторону стыка двух лучей, но также передом может считаться и продольный луч.
  • Преимущества: При необходимости, конструкция гексакоптера позволяет легко добавить два дополнительных луча и мотора, что позволит увеличить суммарную тягу, в следствии чего дрон сможет поднять больше полезной нагрузки. В случае отказа одного из моторов, допускается вероятность, что дрон сможет осуществить мягкую посадку, а не разбиться. Модульная конструкция рамы. Почти все полётные контроллеры поддерживают эту конфигурацию.
  • Недостатки: Громоздкая и дорогостоящая конструкция. Дополнительные двигатели и детали увеличивают вес коптера, соответственно чтобы получить туже продолжительность полёта, что и у квадрокоптера, необходимо устанавливать более ёмкие АКБ.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Y6

  • Описание: Конструкция Y6 представляет собой тип гексакоптера у которого в основе не шесть лучей, а три, каждый из которых соединён с парой соосно установленных моторов (итого 6 моторов). При этом стоит обратить внимание, что нижние пропеллеры проецируют тягу вниз.
  • Преимущества: Меньшее количество компонентов по сравнению с гексакоптером. Поднимает больше полезной нагрузки по сравнению квадрокоптером. При использовании винтов с встречным вращением исключается гироскопический эффект, как у Y3. В случае отказа одного из моторов, допускается вероятность, что дрон сможет осуществить мягкую посадку, а не разбиться.
  • Недостатки: Более дорогой по сравнению с квадрокоптером из-за использования дополнительных деталей, равноценных по стоимости деталям гексакоптера. Дополнительные моторы и детали увеличивают вес коптера, а значит, чтобы получить то же время полёта, что и у квадрокоптера, необходимо будет использовать АКБ большей ёмкости. Как показывает практика, тяга полученная на Y6, немного ниже чем у обычного гексакоптера, вероятно, потому, что нижний винт влияет на тягу верхнего винта. Не все полётные контроллеры поддерживают такую конфигурацию.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Октокоптер

  • Описание: У октокоптера восемь лучей, каждый из которых соединен с мотором. Передней частью гексакоптера принято считать сторону стыка двух лучей.
  • Преимущества: Больше моторов = больше тяги, и соответственно повышенная избыточность, позволяющая дрону уверенно перемещаться с тяжёлыми и дорогостоящими DSLR камерами.
  • Недостатки: Больше моторов = более высокая цена и большой АКБ. Ввиду своей дороговизны актуален только для профессиональной сферы.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

X8

  • Описание: Конструкция X8 по-прежнему является октокоптером, только не с восемью, а с четырьмя лучами, каждый из которых соединён с парой соосно установленных моторов (итого 8 моторов).
  • Преимущества: Больше двигателей = больше тяги, и соответственно повышенная избыточность. Больше шансов мягко посадить дрон в случае отказа мотора.
  • Недостатки: Больше моторов = более высокая цена и большой АКБ. Ввиду своей дороговизны актуален только для профессиональной сферы деятельности.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Размер бпла

Беспилотники бывают разных размеров, от «Нано», которые меньше ладони, до крупногабаритных, которые можно перевозить только в кузове грузовика. Для большинства пользователей, которые только начинают познавать беспилотное хобби, оптимальный диапазон размеров, предлагающих наибольшую универсальность и ценность, находится в пределах от 350мм до 700мм. Размером рамы является диаметр наибольшего круга пересекающего каждый из моторов. Запчасти для БПЛА таких размеров имеют широкий спектр цен и самый большой выбор доступных продуктов.

Как мы делали дрон, который не боится упасть, и что общего между архитектурой, роботом-манипулятором и коптером / Хабр

Управление

Немного про радиоаппаратуру. Сейчас практически все передатчики для летающих моделей работают на частоте 2,4 ГГц. Они достаточно дальнобойные, и этот частотный диапазон не так зашумлен, как, например, 900 МГц. Для полета вообще-то достаточно четырех каналов: газ, рыскание, тангаж, крен. Ну а восьми каналов точно хватит и на что-нибудь еще.

Комплект обычно состоит из самого пульта и приемника. На приемнике находятся ручки управления и дополнительные кнопки. Обычно выбирают аппаратуру Mode2, когда левый стик управляет газом и поворотом, а правый — наклонами коптера. Все ручки, кроме газа, подпружинены и возвращаются в начальное положение при отпускании.

Также стоит обращать внимание на количество каналов. Для беспилотника потребуется четыре канала управления и один канал для переключения режимов полета, кроме того, могут потребоваться дополнительные каналы для управления камерой, для настройки или для особых режимов полетного контроллера. При выборе пульта стоит также учитывать возможность смены радиомодуля, чтобы в будущем его можно было легко обновить.

Этап второй. отладка

  1. Запускаешь двигатели (тут обычно всё по-разному, так что снова смотри документацию)
  2. Немного прибавляешь газ, и смотришь в какую сторону вращаются пропеллеры. Они должны вращаться так, как указано в схеме, которая прилагается к контроллеру. Иначе управление будет инвертироваться. Если что-то не так, то просто переворачиваешь коннектор, который соединяет двигатель и контроллер
  3. Когда всё вращается правильно – прикручиваешь верхнюю деталь рамы. Не заталкивай её на своё место. Если она встаёт туго, значит что-то пошло не так. Ослабь нижние винтики, а после установки затяни всё равномерно
  4. Закрепляешь блок с аккумуляторами
  5. Монтируешь адаптеры для пропеллеров на моторы
  6. Устанавливаешь пропеллеры, учитывая направление вращения моторов. Приподнятая часть лопасти должна смотреть в направлении вращения
  7. Готово.Твой коптер готов пережить первое включение!

Это был один из простейших примеров, с которого стоит начать. Конечно, если ты хочешь использовать камеру, GPS или более сложный контроллер, то конструкция будет сложнее. Поэтому, если вы не уверены в своих силах, то стоит начать с малого. Всё остальное можно прикрутить потом.

Однако, не стоит переоценивать сложность самоделки. Если нет цели собрать мультикоптер из ПВХ труб на базе ардуино (а такое тоже бывает), то в этом нет ничего, что не смог бы рядовой пользователь. Главное не теряться, читать и спрашивать, если что-то не понятно.

Этап первый. сборка

  1. Примерно прикидываешь необходимую длину проводов контроллера, прибавляешь небольшой запас «на криворукость» и обрезаешь их до нужной длины
  2. Припаиваешь коннекторы к выходам регуляторов, чтобы потом проще было подключать моторы
  3. Припаиваешь регуляторы к плате разводки
  4. Припаиваешь коннектор аккумуляторного блока к плате разводки
  5. Прикручиваешь двигатели на лучи коптера. При установке моторов постарайся не сорвать резьбу
  6. Если коннекторов на двигателях нет, то припаиваешь и их
  7. Привинчиваешь лучи с двигателями к плате
  8. Крепишь регуляторы к лучам дрона. Не важно чем, но удобнее всего пластиковыми хомутами
  9. Подключаем провода регуляторов к двигателям в произвольном порядке. Если будет нужно – потом изменим
  10. Закрепляешь на корпусе модуль управления (предварительно сфотографировав тыльную часть. Пригодится). Снова хоть на жвачку, но советую пока использовать мягкий двухсторонний скотч
  11. Подключаешь регуляторы оборотов к контроллеру. В те порты, которые отмечены (  — пусто), обычно подключается белым проводом к экрану
  12. Остатками скотча закрепляешь приёмник как можно ближе к блоку управления, и подключаешь нужные каналы к нужным портам. Используй документацию своего приёмника и фото тыльной стороны платы, чтобы разобраться какая пачка проводов за что отвечает
  13. Подключишь питание устройства от батареи, через коннектор
  14. Profit! Ты собрал свой квадрокоптер
Оцените статью
Радиокоптер.ру
Добавить комментарий

Adblock
detector