Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее Мультикоптеры

Выбор параметров элементов радиоуправляемого мотопланера

Попытаемся «уложить» конструкцию в совершенно необычные рамки массы. Вдруг да получится! Начнем с крыла. Именно его масса вносит наиболее значимую часть в общую сумму.
Исходя из того, что перед нами не стоят задачи создания рекордного аппарата, а условия хорошего парения мы обеспечиваем малой удельной нагрузкой на несущие поверхности, можно не гнаться за сверхвысоким значением удлинения.

Можно легко подобрать простой по исполнению профиль, полностью удовлетворяющий
нас по своим качествам даже на минимальных скоростях полета. Что же касается прочности и жесткости крыла, определяющих и его массу, то эти величины находятся в обратно квадратичной зависимости от удлинения при плоскостях одинаковой профилировки.

https://www.youtube.com/watch?v=videoseries

Уменьшив его в два раза, мы при грамотном проектировании сможем в четыре раза уменьшить вес крыла!
А как быть с сужением? Заманчиво, конечно, прорисовать прямые плоскости — они кажутся значительно проще в изготовлении из-за одинаковых очертаний всех нервюр.

Но на деле трапециевидное крыло ненамного сложнее прямого. Зато повышение прочности широких корневых частей и уменьшение в них напряжений изгиба позволяют дополнительно снизить массу несущих плоскостей на 15—20% по сравнению с прямыми.
Весьма технологичным, отлично зарекомендовавшим себя на тысячах моделей, нетребовательным к выдерживанию очертаний и достаточно «толстым» является классический «Clark-Y».

Его относительная толщина около 12%. Как показывают сравнительные поляры множества профилей, на небольших числах Рейнсльдса «Clark-Y» практически ни в чем не уступает наимоднейшим «эпплеровским», на более высоких скоростях выигрыш при применении последних не столь значителен, чтобы преобладать над технологическими свойствами реализации классического.

Смотрите про коптеры:  Самодельное мини ЛК для FPV полетов

Да и, как правило, преимущество в аэродинамике сказывается у профилей серии «Е» лишь на участке поляры. Перед нами же стоит задача
проектирования не однорежимного парителя, а микросамолета-универсала.
Аэродинамическое решение крыла завершит введение механизации по всей задней кромке, обеспечивающее возможность превращения парителя в пилотажный (!) аппарат, и задание угла поперечного «V» для повышения устойчивости модели. К конструкции же плоскостей вернемся при разговоре о постройке учебной модели.

В смысле аэродинамики фюзеляж представляет собой элемент, лишь соединяющий крыло со стабилизатором, если, конечно, не имеет сравнительно больших размеров, влияющих на устойчивость и управляемость модели в целом. Предположив, что фюзеляж нашего аппарата существенного влияния на эти характеристики не окажет вследствие малого поперечного сечения, будем искать лишь его конструктивное решение. Это же относится и к хвостовому оперению.

Здесь только надо отметить пожелания к нагрузкам, передаваемым от стабилизатора и киля на хвостовую часть фюзеляжа. Если удастся избавиться от скручивающих усилий, можно будет снизить массу этой части. Для этого запроектируем киль из двух вертикальных поверхностей, размещенных по площади симметрично как над стабилизатором, установленным по оси балки фюзеляжа, так и под ним.

Изготовление радиоуправляемого мотопланера

СМИрнов Юрий

Феникс 130А  ИЗГОТОВЛЕНИЕ

(А- Альтернативный)

Можно было под FPV купить готовый планер Феникса 120. Стоит он в rc-legione  всего 2400 рэ:

http://rclegion.ru/products/166/

Но это слишком простой путь.

В e-fly за 600 рэ был куплен лист ЕПП толщиной 15 мм для изготовления фюзеляжа.

Две консоли для крыла приобрел у Сергея (статья тут):

В общем, по деньгам получилось немногим дешевле, но материалы были закуплены, пути назад не было.

C крылом я справился быстро, одну из консолей разрезал пополам и приклеил «ушки» ко второй консоли под  углом 10 градусов (как у Феникса).

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

А вот лист ЕПП-шки 15 мм по которому были «нарисованы» заготовки под фюзеляж несложной формы.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

ЕПП резал обычным канцелярским ножем, что удивительно, получилось ровненько.

Ширина основания фюзеляжа – 7 см, когда на него встают боковины, то получается «жизненное пространство» шириной 4 см, как раз под акк 1000 мА или 1300 мА…

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Хвостовое оперение , после некоторых раздумий, сделал из двойной потолочки. Передняя грань киля армирована бамбуком.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

В потолочку вклеены мои любимые «дискеты», на которые будут подвешены рули.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Фюзеляж вид сверху.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Самый нужный инструмент при конструировании самолета из пенопласта, ЭТО наковальня. Из обрезков ЕПП  вырезал «кубики» для внутреннего усиления фюзеляжа. «Загнал» кубики на «Титане»,  придавил наковальней,  так и сушил весь вечер.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Хвостовая часть фюза укреплена изнутри накладками из линеек.  Киль  вклеивался  на «Титане». Намазал склеиваемые поверхности клеем, зажал в тиски, снаружи наложив линейки, чтобы не повредить ЕПП-ешку.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

В переднюю часть фюза вклеена 30 см-я линейка для пущего усиления носовой части на случай выполнения всем любимой фигуры высшего пилотажа. Носик стыковался на шипах из зубочисток  на «Титане».  Длины листа – 90 см не хватило,я решил перестраховаться сделать переднюю часть длиннее, очень меня беспокоила мысль, что центровка может получиться задней. Из того же листа склеил 10 сантиметровый носик обтекатель.  Он получился приятно округлым. Ровно обрезать ножем у меня не получилось, неровности содрал крупной шкуркой.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Горизонтальный хвостовой стабилизатор приклеивал на глазок, стараясь выдержать прямой угол.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Навесил руль высоты, на просвет хорошо видны петли из дискеты, которые вклеены в потолочку.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Cверху крыло укреплено двумя рейками. Рейки вклеены в крыло для фиксации двигательной стойки.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

9-и граммовые сервы врезаны в борт фюзеляжа с «натягом». Находятся за задней кромкой крыла.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Чтобы тяга не изгибалась где-то посередине, сделал опорную вставку  3-мм-я карбоновая трубка удерживает тягу. Трубка крепится на обрезке линейки, который вклеен в фюзеляж. На тяги пошел карбоновый пруток 2-мм.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Регулятор НК 25А. Двигатель  НК2824 1300 об/в. Расчетная тяга с винтом 8 на 4 – около 600 граммов.  Аккумулятор 1000 мА*ч, три банки, Турниги.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Моторама из обрезка линейки, двигатель крепится к мотораме на 4-х микрошурупах.

Как сделать учебную радиоуправляемую модель мотопланера. Подробнее

Самик начал красить в стиле кубизма, купил для этого очень яркую красную акриловую  краску. Добавил в орнамент черного.  Красил кисточкой.  Акрил Питерский – 50 рэ за баночку. На окраску пошло 2 банки красной краски и 1 банка желтой.

От Константина

Облет этого мотопланера описан в статье  Самодельный мотопланер Феникс, там и описание того, как мы его потеряли и искали 🙂

Кстати, в крайний раз Феникс уже не улетал, а наоборот – стремился сеть в руку!

Радиоуправляемые Авиамодели

Отделка радиоуправляемого мотопланера

После чистовой шлифовки консоли грунтуют под окраску.
В качестве подслоя под краску и для фюзеляжа и для консолей крыла и оперения рекомендуются светлые двухкомпонентные автомобильные грунтовки типа «Body».
Модель окрашена синтетическими автомобильными эмалями из аэрографа (насадки для «факела» 080-100 мм).

Простой планер из потолочки

Сделать радиоуправляемый планер из потолочки своими руками очень просто! Особенно если использовать KFM профиль крыла.

Чертежи планера из потолочной плитки

Фактически для изготовления нужно только скачать чертежи авиамодели расположенные в конце статьи, вырезать детали и аккуратно склеить их!

 Чертежи представляют собой общий вид и разбивку на А4 следующую картинку.

радиоуправляемый планер из потолочнки

Чертежи взяты с англоязычного форума, автор чертежей springer. Поэтому размеры приведены в дюймах. Но особой роли это не играет, смотрите в конце статьи ссылку про масштабирование чертежей и печатайте под необходимый размер!

В результате изготовления у вас получится вот такая авиамодель.

Чертежи планера из потолочнки

Какуже писал выше, при желании вы можете смаштабировать чертеж под свои задачи, например увеличить его. Тогда получиться самолет на радиоуправлении как на фотографии ниже.

Чертежи планера из потолочнки

Полностью описывать технологию изготовления не буду, она банальна – вырезали и склеили детали. Остановимся только на нескольких важных моментах изготовления самолета на радио своими руками.

Чертежи планера из потолочнки

Нос авиамодели изготавливается из пластин потолочки слеенных между собой. О клеях смотрите эту и эту статьи.

Чертежи планера из потолочнки

Фюзеляж весьма простой в изготовлении – фактически прямоугольная коробка.

радиоуправляемый планер из потолочнки

На нос авиамодели приклеивается фанерка или отрезок деревянной линейки, а к ней крепится моторама двигателя.

Чертежи планера из потолочной плитки

Руль направления и руль высоты закреплены на скотче, подробнее смотрите в статье Самодельные петли для авиамодели.

Передача усилий от сервомашинки на рули осуществляется с помощью боуденов (проволока в оболочке), как сделать самодельные боудены из ватных палочек смотрите в статье Бутербродный Мустанг.

Чертежи планера из потолочнки

Крыло имеет ярко выраженное V, обычно на авиамодели без элеронов от 3 до 5 градусов.

Чертежи планера из потолочнки

Профиль KFM5, подробнее о таких профилях смотрите тут.

радиоуправляемый планер из потолочнки

В месте прилегания крыла к фюзеляжу наклеиваются дополнительные слои потолочки. Крепление крыла осуществляется с помощью резинок, в качестве выступов для крепления резинок используются бамбуковые шампуры или отрезки деревянной линейки.

Чертежи планера из потолочной плитки

Сервомашинки и приемник размещаются под крылом, аккумулятор размещается в центе тяжести (ЦТ) авиамодели, это позволяет использовать разные по весу аккумуляторы без смещения ЦТ.

Электроника для авиамодели

Школа авиаконструктора (часть 5) | моделист-конструктор

ШКОЛА АВИАКОНСТРУКТОРА (ЧАСТЬ 5)ПЛАНЁР ИЛИ МОТОПЛАНЁР? Безмоторный планирующий полёт издавна привлекал человека. Казалось бы, чего проще — прикрепил на спину крылья, прыгнул с горы вниз и … полетел. Увы, многочисленные попытки подняться в воздух, описанные в исторических хрониках, привели к успеху лишь в конце XIX века. Первым планеристом стал немецкий инженер Отто Лилиенталь, создавший балансирный планёр — весьма опасный для полётов летательный аппарат. В конце концов, планёр Лилиенталя погубил своего создателя и принёс немало неприятностей энтузиастам планирующего полёта.

Серьёзным недостатком балансирного планёра был способ управления, при котором пилоту приходилось перемещать центр тяжести своего тела. При этом аппарат из послушного мог за секунды превратиться в совершенно неустойчивый, что и приводило к авариям.

Существенное изменение в планирующий летательный аппарат внесли братья Уильбер и Орвилл Райт, создавшие систему аэродинамического управления, состоящую из рулей высоты, руля направления и устройства для перекоса (гоширования) концов крыла, которое вскоре заменили более эффективными элеронами.

Бурное развитие планеризма началось в 1920-е годы, когда в авиацию пришли тысячи любителей. Именно тогда самодеятельными конструкторами многих стран были разработаны сотни разновидностей безмоторных летательных аппаратов.

В 1930 — 1950-е годы конструкции планёров постоянно совершенствовались. Характерным стало применение свободнонесущих — без расчалок и подкосов — крыльев большого удлинения, фюзеляжей обтекаемой формы, а также шасси, убирающегося внутрь фюзеляжа. Однако при изготовлении планёров по-прежнему применялись древесина и полотно.

Планёр «Соловей» Л. Соловьёва

Планёр «Соловей» Л. Соловьёва (площадь крыла-12,24 м2; масса пустого -120 кг; взлётная масса — 200 кг; полётная центровка — 25%; Максимальная скорость — 170 км/ч; скорость сваливания — 40 км/ч; скорость снижения -0,8 м/с; максимальное аэродинамическое качество-20):

1— откидная (вбок вправо) часть фонаря; 2— приёмник воздушного давления указателя скорости; 3 — стартовый крюк; 4 — посадочная лыжа; 5 — подкос (труба из 30ХГСА 45X1,5); 6 — тормозной щиток; 7 — коробчатый лонжерон крыла (полки — сосна, стенки — берёзовая фанера); 8 — профиль крыла DFS-Р9-14, 13,8%; 9 — коробчатая фанерная балка; 10 — указатель скорости; 11 — высотомер; 12 — указатель скольжения; 13 — вариометр; 14 — резиновый амортизатор лыжи; 15 — парашют ПНЛ; 16 — колесо d300x125

Учебные планёры конструкции П. Альмурзина

Учебные планёры конструкции П. Альмурзина:

АНБ-М — одноместный планёр: площадь крыла — 10,5 м2; масса пустого — 70 кг; взлётная масса — 145 кг.

АНБ-Я — двухместный планёр-спарка

Учебный планёр-спарка АНБ-Я

Учебный планёр-спарка АНБ-Я

Учебные планёры

Учебные планёры:

А — стеклопластиковый «Пеликан»: площадь крыла -10,67 м2; масса пустого — 85 кг; взлётная масса — 185 кг; скорость сваливания — 50 км/ч.

Б-планёр «Фома» В. Маркова (г. Иркутск): масса пустого — 85 кг

Планёры первоначального обучения

Планёры первоначального обучения:

А -КАИ-502: размах крыла-11 м; площадь крыла-13,2 м2; профиль крыла -РША- 15%; масса пустого -110 кг; взлётная масса-260 кг; скорость сваливания — 52 км/ч; оптимальная скорость планирования — 70 км/ч; максимальное аэродинамическое качество — 14; минимальная скорость снижения —1,3 м/с.

Б — планёр «Юность»: размах крыла — 10 м; площадь крыла — 13м2; профиль крыла — РИА — 14%; масса пустого — 95 кг; взлётная масса — 245 кг; скорость сваливания — 50 км/ч; оптимальная скорость планирования — 70 км/ч; максимальное аэродинамическое качество — 13; минимальная скорость снижения —1,3 м/с.

В — одноместный планёр УТ-3: размах крыла — 9,5 м; площадь крыла- 11,9 м2; профиль крыла- РША-15%; масса пустого-102 кг; взлётная масса — 177 кг; скорость сваливания — 50 км/ч; оптимальная скорость планирования — 65 км/ч; максимальное аэродинамическое качество — 12; минимальная скорость снижения — 1м/с

Настоящий переворот в планеризме произошёл в конце 1960-х годов, когда появились композитные материалы, состоявшие из стеклоткани и связующего (эпоксидной или полиэфирной смолы). Причём успех пластиковым планёрам обеспечивался не столько новыми материалами, сколько новыми технологиями изготовления из них элементов летательных аппаратов.

Интересно, что планёры из композитных материалов оказались тяжелее, чем деревянные и металлические. Однако высокая точность воспроизведения теоретических контуров аэродинамических поверхностей и прекрасная внешняя отделка, обеспечиваемые новой технологией, позволили существенно увеличить аэродинамическое качество планёров. Кстати, при переходе от металла к композитам аэродинамическое качество возрастало на 20 — 30 процентов. Масса конструкции планёра при этом возрастала, что приводило к увеличению скорости полёта, однако высокое аэродинамическое качество позволяло заметно уменьшить вертикальную скорость снижения. Именно это позволяло планеристам-«композитникам» выигрывать соревнования у тех, кто выступал на деревянных или металлических планёрах. В результате современные спортсмены-планеристы летают исключительно на композитных планёрах и самолётах.

Технология изготовления композитных конструкций сейчас широко используется при создании лёгких, в том числе и любительских самолётов и мотопланёров, поэтому имеет смысл рассказать о ней подробнее.

Основными элементами современного планёрного крыла являются лонжерон коробчатого или двутаврового сечения, воспринимающий изгиб и перерезывающую силу, а также верхняя и нижняя несущие обшивочные панели, воспринимающие нагрузки от кручения крыла.

Постройка крыла начинается с изготовления матриц для формования обшивочных панелей. Сначала изготавливается деревянная болванка, которая в точности воспроизводит наружные контуры панели. При этом безукоризненность теоретических контуров и чистота поверхности болванки будут определять точность и гладкость поверхностей будущих панелей.

После нанесения на болванку разделительного слоя выкладываются полотнища грубой стеклоткани, пропитанные эпоксидным связующим. Одновременно вклеивается силовой каркас, сваренный из тонкостенных стальных труб или профилей уголкового сечения. После отверждения смолы получившаяся корка-матрица снимается с болванки и устанавливается на подходящей подставке.

Аналогично изготавливаются матрицы для верхней и нижней панелей, стабилизатора, левой и правой боковин фюзеляжа, которые обычно выполняются зацело с килем. Панели имеют трёхслойную конструкцию типа «сандвич» — их внутреннюю и наружную поверхность изготавливают из стеклоткани, внутренний заполнитель — пенопласт. Толщина его в зависимости от размеров панели составляет от 3 до 10 мм. Внутренняя и наружная обшивка выкладывается из нескольких слоев стеклоткани толщиной от 0,05 до 0,25 мм. Общая же толщина стеклотканевых «корок» определяется при расчёте конструкции на прочность.

При изготовлении крыла в матрицу сначала приформовывают все слои стеклоткани, составляющие внешнюю обшивку. Предварительно стеклоткань пропитывается эпоксидным связующим -чаще всего любители используют смолу К-153. Затем на стеклоткань быстро выкладывают пенопластовый заполнитель, нарезанный полосками от 40 до 60 мм, после чего пенопласт накрывают внутренним слоем пропитанной связующим стеклоткани. Чтобы при этом не было складок, стеклотканевые обшивки вручную выравнивают и выглаживают.

Далее получившийся «полуфабрикат» необходимо накрыть воздухонепроницаемой плёнкой с врезанным в неё штуцером и приклеить её герметиком (или даже просто пластилином) к краям матрицы. Далее через штуцер из-под плёнки вакуумным насосом откачивается воздух — при этом весь набор панели плотно сдавливается и прижимается к матрице. В таком виде набор выдерживается до окончательной полимеризации связующего.

Планёр «Какаду»

Планёр «Какаду» (площадь крыла — 8,2 м2; профиль крыла — PШA- 15%, масса пустого — 80 кг; взлётная масса — 155 кг):

1 — задний лонжерон крыла (состоит из стенки с пенопластовым заполнителем, оклеенной с двух сторон стеклотканью, и стеклопластиковых полок); 2 — заполнитель из пенопласта ПС-4; 3 — стеклопластиковая полка лонжерона (2 шт.); 4 — стеклопластиковый узел навески элерона; 5 — стеклопластиковый трубчатый лонжерон элерона (толщина стенки 0,5 мм); 6 — трёхслойные панели, образующие обшивку элеронов (заполнитель — пенопласт ПС-4 толщиной 5 мм, толщина стеклопластиковой корки снаружи 0,4 мм, изнутри — 0,3 мм); 7 — фюзеляжная балка; 8 — полка фюзеляжной балки (стеклопластик толщиной 3 мм); 9 — обшивка из стеклопластика толщиной 1 мм; 10 — блок из пенопласта ПС-4; 11 — стеклопластиковая обшивка носка крыла толщиной от 0,5 до 1,5 мм, образующая работающий на кручение контур; 12 — типовая нервюра крыла; 13 — стеклопластиковая полка нервюры толщиной 1 мм; 14 — стеклопластиковая стенка нервюры толщиной 0,3 мм; 15 — передний лонжерон крыла (по конструкции аналогичен заднему)

Планёр и мотопланёр конструкции В. Мирошника

Планёр и мотопланёр конструкции В. Мирошника:

А — учебно-тренировочный планёр А-10Б «Беркут»:

площадь крыла -10 м2; масса пустого — 107,5 кг; взлётная масса — 190 кг; максимальная скорость 190 км/ч; скорость сваливания — 45 км/ч; максимальное аэродинамическое качество — 22; диапазон эксплуатационных перегрузок — от 5 до -2,5; расчётная перегрузка — 10.

Б — мотопланёр А-10А с двигателем «Вихрь-30-Аэро» воздушного охлаждения мощностью 21 л.с. В полёте силовая установка может убираться в отсек, расположенный в средней части фюзеляжа.

Длина мотопланёра — 5,6 м; размах крыла — 9,3 м; площадь крыла — 9,2 м2; взлётная масса — 220 кг; максимальная скорость — 180 км/ч; скорость сваливания — 55 км/ч; максимальное аэродинамическое качество — 19; диаметр воздушного винта — 0,98 м; шаг винта — 0,4 м, частота вращения винта — 5000 об/мин

Мотопланёр «Коршун-М» (ХАИ-29М)

Мотопланёр «Коршун-М» (ХАИ-29М)

Мотопланёр «Коршун-М» (ХАИ-29М):

двигатель — «Колибри-350» самодельный, двухцилиндровый, оппозитный, мощностью 15 л.с.; длина мотопланёра — 5,25 м; размах крыла -9 м, площадь крыла — 12,6 м2 ; профиль крыла — Р-П — 14%; профиль зависающего элерона — Р-Ш — 16%; масса пустого — 135 кг; взлётная масса — 221 кг; максимальная скорость -100 км/ч; крейсерская скорость — 65 км/ч; скорость сваливания — 40 км/ч; максимальное аэродинамическое качество -10

Аналогичная технология используется и при изготовлении полок лонжеронов, с той лишь разницей, что их выкладывают из однонаправленного стекло- или угле-волокна. Окончательную сборку крыла, оперения и фюзеляжа обычно производят в матрицах.

При необходимости в готовую отформованную трёхслойную панель вкладывают и вклеивают лонжероны, шпангоуты и нервюры, после чего всё накрывается и заклеивается верхней панелью.

Поскольку между деталями внутреннего набора и обшивочными панелями бывают большие зазоры, рекомендуется при склейке использовать эпоксидный клей с наполнителем — например, стеклянными микросферами. Контур склейки панелей снаружи (по возможности, и изнутри) проклеивается стеклотканевой лентой.

Технология выклейки и сборки описывается здесь лишь в общих чертах, но, как показывает опыт, авиаконструкторы любители достаточно быстро постигают её тонкости, особенно если есть возможность посмотреть, как это делают те, кто уже освоил эту методику.

К сожалению, высокая стоимость современных композитных планёров привела к падению массовости планёрного спорта. Обеспокоенная этим, Международная федерация авиационного спорта (ФАИ) ввела ряд упрощённых классов планёров — стандартный, клубный и им подобные, размах крыла у которых не должен превышать 15 метров. Правда, остаются сложности с запуском таких планёров — для этого требуются самолёты-буксировщики или достаточно сложные и дорогие мотолебёдки. В результате на слёты самодеятельных авиаконструкторов СЛА с каждым годом привозят всё меньше планёров. Ко всему, значительную часть планёров представляют вариации БРО-11 конструкции Б.И. Ошкиниса.

Разумеется, постройку своего первого летательного аппарата лучше всего делать по образу и подобию надёжного, хорошо летающего прототипа. Именно такое «копирование» с минимальным количеством проб и ошибок даёт тот бесценный опыт, который нельзя приобрести из учебников, инструкций и описаний.

Тем не менее, на слётах СЛА периодически появляются и оригинальные, более современные летательные аппараты, такие, как планёр АНБ-М, созданный П. Альмурзиным из города Самары.

Пётр мечтал о «крыльях» с детства. Но плохое зрение помешало ему поступить в лётное училище и заниматься авиационным спортом. Но нет худа без добра — Пётр поступил в Авиационный институт, закончил его и получил направление на авиационный завод. Именно там он сумел организовать юношеское авиационное КБ, впоследствии преобразованное в клуб «Полёт». И самыми надёжными помощниками Апьмурзина стали студенты авиационного института, столь же страстно, как и Пётр, мечтавшие о полётах.

Первой самостоятельно разработанной конструкцией клуба стал планёр, выполненный с учётом технологических особенностей современного авиационного производства — прочный, простой и надёжный, на котором можно было бы научиться летать всем членам клуба.

Первый планёр получил название АНБ — по начальным буквам фамилий его конструкторов: Апьмурзин, Никитин, Богатов. Крыло и оперение аппарата имели нетрадиционную для планёров такого класса металлическую конструкцию с использованием в качестве лонжеронов тонкостенных дюралюминиевых труб большого диаметра. Только фюзеляж на исходном варианте планёра был сделан из композитных материалов. Однако на следующем варианте кабину спроектировали металлической, что позволило на 25 — 30 кг уменьшить его массу.

Создатели планёра оказались не только грамотными конструкторами, но и хорошими технологами, знакомыми с современным авиационным производством. Так, при изготовлении тонких листовых деталей из дюралюминия они использовали простую, хорошо отработанную в авиационном производстве технологическую операцию — штамповку резиной. Необходимая для этого оснастка была сделана молодыми инженерами самостоятельно.

Сборку планёров производили в подвальном помещении, где располагался клуб. Лётные характеристики новых аппаратов оказались близкими к расчётным. Вскоре все члены клуба научились летать на самодельных планёрах, совершив десятки самостоятельных полётов с мотолебёдки. А на слётах СЛА планёры неизменно получали самую высокую оценку специалистов, признавших АНБ-М лучшим планёром первоначального обучения среди серийных и любительских конструкций. А клубу «Полёт» представили новое, более подходящее для работы помещение и он был реорганизован в «Конструкторское бюро спортивной авиации» при авиационном заводе со штатом в пять человек.

Тем временем работы по модернизации планёра АНБ продолжались — улучшалась его конструкция, проводились статические испытания на прочность, велась подготовка к серийному производству аппарата.

Всем хороши полёты на планёрах с запуском их с помощью мотолебёдки, однако у таких полётов есть один весьма существенный недостаток — кратковременность. Поэтому в развитии каждого коллектива авиаторов-любителей вполне закономерным оказывается переход от планёра к самолёту.

Используя хорошо отработанную конструкцию планёра АНБ и технологию его производства, молодые авиаконструкторы Альмурзин, Никитин, Сафронов и Царьков спроектировали и построили одноместный тренировочный самолёт «Кристалл» (подробное описание конструкции этой машины — в предыдущих «уроках» нашей школы — в «М-К» № 7 за 2023 г.).

Следует заметить, что планёры первоначального обучения всегда привлекали как любителей-одиночек, так и конструкторские коллективы. Так, одним из самых красивых учебных планёров из тех, что когда-либо демонстрировались на слётах СЛА, был признан «Какаду», созданный авиаторами-любителями из города Отрадное Ленинградской области.

Планёр этот изготовлен из трёх видов материалов — пенопласта, стеклоткани и эпоксидного связующего, причём конструкция крыла и оперения представляет собой своего рода маленький конструкторский шедевр.

Нервюры крыла сделаны из пенопласта и оклеены тонкой стеклотканью. Носок крыла, воспринимающий крутящий момент, — выклеенная на пенопластовом блоке-заполнителе стеклопластиковая оболочка. Фюзеляжная балка вырезана из пенопласта и оклеена стеклотканью, причём изгибающий момент воспринимают стеклопластиковые полки, наклеенные на верхнюю и нижнюю поверхности балки. Качество работы — отменное, внешняя отделка — на зависть многим самодельщикам. Единственное «но» — летать планёр отказывался — как оказалось, в стремлении снизить массу конструкции создатели планёра излишне уменьшили крыло.

Энтузиастам, прошедшим лётную подготовку на планёрах первоначального обучения, можно порекомендовать более сложный аппарат, например, планёр А-10Б «Беркут», созданный студентами Самарского авиационного института под руководством В. Мирошника. Интересно, что по своим параметрам планёр не соответствует ни одному спортивному классу и по своим размерам он меньше стандартных. При этом у А-10Б очень чистые аэродинамические формы, простое подкосное крыло обтянуто тканью, а сам аппарат изготовлен из наиболее распространённых пластиков. Достаточно большое аэродинамическое качество планёра даёт возможность совершать на нём даже продолжительные парящие полёты. А простая техника пилотирования позволяет и новичку справляться с подобным аппаратом. Представляется, что именно таких недорогих и «летучих» планёров не хватает отечественному планеризму.

Своеобразным развитием идей, заложенных в А-10Б, стал планёр «Мечта», созданный в московским самодеятельном клубе под руководством В. Фёдорова. По конструкции, технологии изготовления и внешнему виду «Мечта» -типичный современный спортивный планёр, а по удельной нагрузке на крыло и некоторым другим параметрам — типичный планёр первоначального обучения. Летает «Мечта» совсем неплохо, на слётах СЛА этот планёр отправляли в полёт на буксире у самолёта «Вилга».

Следует заметить, что полёты планёров с запуском их с амортизатора, лебёдки или с небольшой горы крайне ограничены во времени и не приносят пилоту должного удовлетворения. Другое дело — мотопланёр! У аппарата с мотором возможности существенно шире. Причём мотопланёры даже с маломощными моторами подчас превосходят по лётным данным некоторые лёгкие самолёты любительской постройки.

Дело, видимо, в том, что у самолётов, как правило, размах крыла существенно меньше, чем у мотопланёра, а при уменьшении размаха потери в подъёмной силе получаются большими, нежели выигрыш в массе. В результате некоторые самолёты оказываются не в состоянии оторваться от земли. В то время как тренировочные мотопланёры с более грубыми аэродинамическими формами и маломощными двигателями прекрасно летают. Единственным отличием этих летательных аппаратов от самолётов является больший размах крыла. Думается, именно поэтому тренировочные мотопланёры пользуются особой популярностью у любителей.

Мотопланёр ХАИ-35М «Энтузиаст»

Мотопланёр ХАИ-35М «Энтузиаст»:

мощность двигателя — 36 л,с.; площадь крыла — 11м2; масса пустого — 170 кг; взлётная масса — 260 кг; полётная центровка — 28 %; максимальная скорость — 150 км/ч; скорость сваливания — 48 км/ч; скороподъёмность — 2,4 м/с; максимальное аэродинамическое качество — 15

Мотопланёр «Гарнис» Б. Ошкиниса и Ч. Кишонаса (г. Каунас)

Мотопланёр «Гарнис» Б. Ошкиниса и Ч. Кишонаса (г. Каунас)

длина мотопланёра -5 м; размах крыла -8 м; площадь крыла — 10,6 м2; масса пустого — 139 кг; взлётная масса — 215 кг; максимальная скорость -130 км/ч; посадочная скорость — 40 км/ч; частота вращения воздушного винта — 5000 об/мин.);

1 — вариометр; 2 — указатель скольжения; 3 — указатель скорости; 4 — высотомер; 5 — педали; 6 — приёмник воздушного давления; 7 — трубчатая моторама; 8 — двигатель; 9 — тросовые расчалки; 10 — тросы управления рулём направления; 11 — тяги управления рулём высоты; 12 — цельноповоротное горизонтальное оперение; 13 — трубчатые подкосы оперения; 14 — участки крыла и оперения, обтянутые лавсановой плёнкой; 15 — хвостовая рессора; 16 — стеклопластиковая гондола пилота; 17 — тяги управления элеронами; 18 — рессора главного шасси; 19 — проводка управления двигателем; 20 — стеклопластиковая рессора носовой стойки шасси; 21 — лонжерон крыла; 22 — узлы навески элерона; 23 — элерон ( верхняя обшивка — стеклопластик, нижняя — лавсановая плёнка); 24 — глушитель; 25 — топливный бак; 26 — трубчатый подкос крыла

Двухместный мотопланёр «Аэропракт-18» (СКБ КуАИ)

Двухместный мотопланёр «Аэропракт-18» (СКБ КуАИ):

площадь крыла — 16,3 м2; профиль крыла — модифицированный GAW-1 — 15%; взлётная масса — 390 кг; масса пустого — 200 кг; максимальная скорость -130 км/ч; скороподъёмность — 2, 3 м/с; расчётная перегрузка — от 10,2 до —5,1; максимальное аэродинамическое качество -25; тяга воздушного винта — 70 кгс при 5000 об/мин

Двухместный мотопланёр «Байкал» с силовой установкой из двух спаренных 40-сильных двигателей «Вихрь-25» воздушного охлаждения

Двухместный мотопланёр «Байкал» с силовой установкой из двух спаренных 40-сильных двигателей «Вихрь-25» воздушного охлаждения:

площадь крыла — 18,9 м2; взлётная масса — 817 кг; скорость сваливания — 70 км/ч; максимальная скорость горизонтального полёта-150 км/ч

Мотопланёр «Солитар» конструкции Берта Рутана с 23-сильным двигателем КFМ-107E. расположенным на складной стойке в носовой части фюзеляжа

Мотопланёр «Солитар» конструкции Берта Рутана с 23-сильным двигателем КFМ-107E. расположенным на складной стойке в носовой части фюзеляжа:

размах крыла-12,725 м; размах переднего крыла — 4,68 м; длина мотопланёра -5,86 м; площадь переднего крыла — 1,73 м2; площадь основного крыла — 7,79 м2; масса пустого — 172 кг; взлётная масса — 281 кг; максимальное аэродинамическое качество — 32; максимальная скорость — 213 км/ч; скорость сваливания — 60 км/ч; дальность полёта — 241 км; диапазон эксплуатационных перегрузок от 7 до -3

Больших успехов в создании простейших таких аппаратов достигли студенты Харьковского авиационного института, построившие под руководством А. Баранникова мотопланёр «Коршун-М», а в дальнейшем под руководством Н. Лавровой был создан более совершенный «Энтузиаст», обладавший хорошими аэродинамическими формами, закрытой кабиной пилота и тщательно закапотированным двигателем.

Следует заметить, что оба этих мотопланёра являются дальнейшим развитием популярного в своё время учебного планёра БРО-11 конструкции Б. Ошкиниса. Аппараты харьковских студентов имеют простейшую конструкцию без претензий на оригинальность, зато они очень прочны, надёжны и доступны в управлении для начинающих пилотов.

На одном из слётов СЛА Ч. Кишонас из Каунаса продемонстрировал один из лучших мотопланёров — «Гарнис», изготовленный целиком из стеклопластика. Обшивка крыльев и оперения — прозрачная лавсановая плёнка. Силовой агрегат — лодочный мотор «Вихрь-М» мощностью 25 л.с., переделанный под воздушное охлаждение. Мотор легко демонтируется с аппарата.

Мотопланёр комплектуется несколькими вариантами легкосъёмных шасси -трёхколёсным самолётного типа, планёрным одноколёсным и поплавковым.

Мотопланёры и планёры по типу «Коршуна» и «Гарниса» строятся в нашей стране многими любителями в десятках экземпляров. Хочется обратить внимание читателей лишь на одну особенность подобных аппаратов, построенных по образу и подобию БРО-11. Как известно, прототип (а также его многочисленные копии) оснащён зависающими элеронами, кинематически связанными с рулём высоты. При заходе на посадку пилот берёт на себя ручку управления, при этом элероны синхронно отклоняются вниз, что вызывает возрастание подъёмной силы и уменьшение скорости. Но, если пилот случайно перебрал ручку на себя, а затем, исправляя ситуацию, отдал ручку от себя, — последнее движение ручки вызывает не только отклонение руля высоты, но и возврат элеронов в исходное положение, что равносильно уборке закрылков. При этом подъёмная сила резко уменьшается — и планёр «проваливается», что весьма опасно при полёте на небольшой высоте, перед посадкой.

Эксперименты, проведённые планеристами, летающими на БРО-11, показали, что без зависания элеронов взлётно-посадочные характеристики планёра практически не ухудшаются, но пилотировать такой планёр намного проще, что заметно снижает аварийность. При этом для крыла мотопланёра-тихохода более выгодным может оказаться выпукло-вогнутый профиль «Геттинген F-17» — его в своё время использовали на мотопланёре Феникс-02, созданном инженером из ЦАГИ С. Поповым.

Популярность мотопланёров обусловлена, прежде всего, возможностью их старта без специальных буксировочных приспособлений, а также вследствие появления простых, лёгких и достаточно мощных моторов. На слётах СЛА демонстрировалось немало оригинальных, эффектно летающих аппаратов такого класса, созданных конструкторами-любителями. Прекрасный мотопланёр А-10А был построен В. Мирошником на базе уже знакомого читателям А-10Б. Силовой агрегат у него — двигатель «Вихрь-25, переделанный под воздушное охлаждение; размещается он над фюзеляжем, за кабиной пилота. Двигатель, как правило, использовался лишь для взлёта и набора высоты. После его выключения специальный механизм складывал ферму с установленным на неё двигателем и убирал её в фюзеляж, что значительно снижало аэродинамическое сопротивление летательного аппарата. При необходимости двигатель с помощью того же механизма можно было выдвинуть из ниши и запустить.

Ещё один летательный аппарат, построенный студентами из Самарского авиационного института, — двухместный мотопланёр «Аэропракт-18». Он компактен, лёгок, сделан целиком из пластика и оснащён 30-сильным двигателем «Вихрь-30-аэро» с воздушным охлаждением — у этой модели двигатель в полёте не убирается, что позволило упростить и облегчить конструкцию.

Тем не менее, конструкторы-любители продолжали разрабатывать оригинальные варианты механизмов уборки моторов в полёте, и одно из таких наиболее интересных устройств было создано группой московских авиаторов-любителей под руководством А. Фёдорова для одноместного двухмоторного мотопланёра «Истра». Лёгкие моторы были полностью вписаны в обводы крыла, не выступая за его теоретические контуры, а воздушные винты вращались в щелях за задним лонжероном крыла. При остановке двигателей винты фиксировались в горизонтальном положении и закрывались сдвижным хвостовиком крыла.

Ещё одна разработка московских планеристов-любителей — двухместный мотопланёр «Байкал», также оснащённый двумя двигателями. Правда, размещены они не на крыле, а на V-образном пилоне над фюзеляжем. В полёте моторы убираются в фюзеляж — так же, как на «Истре».

Особенность мотопланёров А.Фёдорова — композитная конструкция, выполненная в соответствии с канонами современных технологий.

Принято считать, что аэродинамическая схема современных планёров и мотопланёров полностью стабилизировалась. И в самом деле, все современные аппараты такого типа мало отличаются друг от друга, а их геометрические пропорции практически одинаковые. Тем не менее, конструкторская мысль ищет всё новые решения, иные схемы и пропорции. Подтверждением тому стали летательные аппараты швейцарских конструкторов и мотопланёр Берта Рутана «Солитар». Эти оригинальные мотопланёры, выполненные по схеме «утка», ещё раз продемонстрировали преимущества несущего горизонтального оперения.

Оцените статью
Радиокоптер.ру
Добавить комментарий