Как ставить лопасти на квадрокоптер

Как ставить лопасти на квадрокоптер Роботы

№1 снимайте пропеллеры при любых работах с квадрокоптером

Всегда снимайте пропеллеры, когда выполняете ремонт или настройку квадрокоптера, и не ставьте их, пока он не будет готов к полету.

Это очень важное правило, может что-нибудь замкнуть или вы случайно своими действиями включите газ — пропеллеры вас достаточно сильно поранят. Несколько тысяч оборотов в минуту в любом случае нанесут травму.

Лопасти пропеллеров могут не только вас порезать, но и замкнуть/перерезать электронику. Как правило, если производится какой-то ремонт на дроне, то со всех сторон начинают торчать провода и прочая электроника, чтобы был доступ к нужному месту.

№4 проверьте направление квадрокоптера

Подключите квадрокоптер к Betaflight Configurator, перейдите во вкладку Setup, там вы увидите 3D-модель дрона. Подвигайте во все стороны дрон (который у вас на столе), он должен полностью повторять ваши движения. Если вы наклонили нос вниз, то моделька тоже должна наклониться стрелкой вниз.

Совет. Если моделька не реагирует на ваши движения, проверьте, включен для акселерометр во вкладке Configuration.

Смотрите про коптеры:  Как настроить робот пылесос xiaomi на русский язык через андроид

Если вы наклонили дрон носом вниз, а моделька наклонилась вправо, значит, вам нужно внести корректировки во вкладке Configuration, в блоке меню «Board and Sensor Alignment». Как правило, проблемы такого характера бывают с осью вращения. Там нужно будет выставить значение в градусах, например, 170 (число рандомное, все зависит от того, как будет вести себя моделька по отношению к реальному квадрокотперу).

№5 проверьте моторы

Проверить нужно следующее:

  • все ли двигатели работают;
  • в правильном ли направлении они крутятся;
  • нет ли механических повреждений.

Подключите аккумулятор, запустите Betaflight configurator и перейдите во вкладку Motor. Поставьте флажок в положение «I understand» (я понимаю). Теперь по одному ползунку поднимайте вверх и смотрите, в какую сторону крутится мотор, схема вращения будет на той же странице. Не нужно сильно раскручивать моторы, без пропеллеров это им только вредит.

Если один из двигателей не реагирует или дергается, проверьте качество пайки от полетного контроллера до ESC (регуляторы оборотов) и от ESC до моторов.

Если мотор крутится не в ту сторону, можно исправить 3 способами:

  • поменять местами провода
  • переназначить порт (resource remapping)
  • или сделать реверс в BLheli — это самый простой и удобный способ.

Для более простого определения, в какую сторону вращается мотор, на него можно положить пропеллер (на вал), но не закручивать!

№6 проверьте приемник

Подключитесь к бетафлайт и перейдите во вкладку «receiver». Подключите аккумулятор, включите пульт. Проверьте, все ли команды реагируют. Когда вы двигаете стиками и переключателями, цветные полоски тоже должны двигаться.

Если ничего не происходит, убедитесь, включен ли приемник и пульт, правильно ли подключен приемник. Также убедитесь, что во вкладке Конфигурация выбран правильный тип приемника (IBus, SBus и т.д.), а также правильный ли выбран протокол работы (мультишот, дшот и т.д.).

Если полоски двигаются, но не в том порядке, попробуйте поменять карту разметки с AETR1234 на TEAR1234 во вкладке «receiver».

Далее убедитесь, что среднее положение полосок на отметке 1500, а минимальные и максимальные 1000 и 2000 соответственно. Поправить значения можно кнопками на пульте:

или внеся корректировки через CLI, подробнее здесь (в статье это заголовок Receiver).

Неправильные средние значения приведут к тому, что ваш дрон начнет дрейфовать и лететь в разные стороны (смотря какой канал не в середине).

Проверьте, какое число показывает стик газа, когда он в нижнем положении. Число не должно быть выше 1040, в противном случае дрон не получится заармить (запустить двигатели).

№7 арминг, газ и проблемы с запуском

Попробуйте заармить дрон (запустить двигатели) и дать небольшой газ. Без пропеллеров, конечно же.

Теперь слушайте, как они работают — есть ли посторонний шум, скрежет, вибрации или подергивания. Скорее всего, мотор будет дергаться или вибрировать. Для исправления можно попробовать следующее:

  • проблему может исправить монтаж полетного контроллера на мягкие подушки (силиконовые);
  • если вы используете режим обновления 32К/32К, попробуйте вернуться на 8К/8К, так как на 32К гироскоп намного чувствительнее;
  • попробуйте уменьшить значение фильтра гироскопа «low pass filter frequency» (это фильтр низких частот);

Если проблему не удалось устранить, почитайте эту статью, возможно, она вам поможет.

Балансировка пропеллера

Высококлассные винты не нужно дополнительно балансировать, они не вызывают вибраций дрона. Бюджетные лопасти, не редко плохо сбалансированы и создают вибрации при полете. Это отрицательно сказывается на качестве снимков, видео (на них появляется рябь, эффект желе), приводит к быстрому износу аппарата.

Вибрацию устраняют с помощью небольшого прибора — балансира.

На ось надевают пропеллер, фиксируют его зажимами и ставят на небольшой станочек. Сбалансированный винт замрет в горизонтальном положении. Если одна его часть опустится вниз, значит, лопасти разбалансированы. Чтобы привести их в надлежащее состояние, можно на более легкую сторону (которая вверху) наклеить кусочки изоленты, смазать клеем или тяжелую часть подточить наждачкой.

Если под рукой нет балансира, можно использовать подручные средства — стержень от шариковой ручки, два стакана или чашки. Вставляем стержень в отверстие винта. Если он болтается, накрутим на него скотч, чтобы пропеллер плотно держался. Поставим емкости на ровную поверхность на небольшом расстоянии друг от друга, на них укладываем импровизированную ось с винтом. Смотрим, есть ли отклонения, и корректируем их.

Правильная балансировка лопастей продлит срок службы квадрокоптера!

Балансировка пропеллеров

Можно с уверенностью сказать, что большинство пропеллеров, особенно дешевых, нельзя назвать сбалансированными на 100%. Такие винты не только раздражающе сильно шумят, но и вносят дополнительную вибрацию в работу ВМГ. Из-за этого, в частности, снижается качество воздушных съемок (эффект желе).

Как видим, без процедуры балансировки винтов для квадрокоптера нам не обойтись. Для этого понадобятся:

  • Винт;
  • Скотч или суперклей (можно заменить лаком для ногтей);
  • Наждачная бумага;
  • Специальный балансир пропеллеров Du-Bro Tru-Spin – один из лучших, или китайские аналоги.

Прежде всего, нужно выставить само приспособление для балансировки так, чтобы его ось была строго горизонтальной.

Лопасть проверяется на отсутствие повреждений, устанавливается на ось и слегка отклоняется в ту или иную сторону. Если он не возвращается в горизонтальное положение, нужно облегчить (подчистить наждачной бумагой) более тяжелое лезвие или наклеить кусочек липкой ленты на более легкое.

Ось балансировочного станка переворачивается – нужно убедиться, что пропеллер сохраняет равновесие и в этом положении. Отметим, что все подчистки и наклеивания должны выполняться на внутренних (вогнутых) поверхностях лопастей.

Следующим шагом будет балансировка ступицы. Для этого пропеллер устанавливается вертикально. Если он отклоняется вправо, нужно утяжелять клеем или лаком левую часть ступицы и наоборот. Добиваемся баланса, переворачиваем пропеллер и убеждаемся, что в этом положении он также уравновешен. Процедура закончена.

Безопасность

LiPo АКБ не совсем безопасны, так как они содержат газообразный водород под давлением и имеют тенденцию гореть и/или взрываться, когда что-то не так. Таким образом, если у вас есть какие-либо сомнения относительно работоспособности аккумулятора, не в коем случае, не подключайте его к беспилотнику или даже к зарядному устройству — считайте его «списанным» и утилизируйте его надлежащим образом.

Контрольные признаки того, что с аккумулятором что-то не так это вмятины или вздутие (т.е. утечка газа). При зарядке LiPo батареи лучше всего использовать безопасные LiPo ящики (Battery safe box). Хранение батареи также лучше осуществляться в этих ящиках.

В случае краша, первое, что вам нужно сделать, это отключить и проверить аккумулятор. Батарея исполненная в боксе может увеличить вес, но при этом реально поможет защитить АКБ при краше. Некоторые производители продают аккумуляторы с жестким чехлом и без него.

Вращение

Несущие винты рассчитаны на вращение по часовой стрелке (CW), либо против часовой стрелки (CCW). На направление вращения указывает наклон лопасти (смотреть на пропеллер с торца). Если правая кромка лопасти выше — CCW, если левая кромка — CW.

Если конструкция вашего беспилотника подразумевает перевёрнутое расположение моторов (как в случае с конфигурациями Vtail, Y6, X8) обязательно измените направление вращения несущих винтов, чтобы тяга была направлена вниз.

Лицевая сторона несущего винта всегда должна быть обращена к небу. Документация которая идёт с контроллером полёта как правило содержит информацию о направлении вращения каждого винта, для каждой поддерживаемой контроллером многомоторной конфигурации.

Длина и шаг

Эти параметры являются главными. Под длиной понимают диаметр диска, образующегося при вращении пропеллера. Шаг может быть определен как расстояние, которое пропеллер может пройти в некоей твердой среде за один полный оборот (вспомните, как входит в доску самый обыкновенный шуруп). При прочих равных условиях, величина шага определяется наклоном (углом атаки) лопастей квадрокоптера.

Тяга винтомоторной группы (ВМГ) определяется объемом воздуха, который ее винты способны переместить. Понятно, что увеличение длины и/или шага пропеллеров при сохранении их скорости вращения положительно сказывается на тяге, но, к сожалению, увеличивает и сопротивление воздуха за счет растущей турбулентности.

Крупные винты с малым шагом идеально подходят для аэрофотосъемки, а небольшими пропеллерами с большим шагом оснащаются гоночные дроны.

Ёмкость

Ёмкость аккумуляторной батареи измеряется в ампер-часах (Ач). Аккумуляторы небольших размеров могут иметь ёмкость от 0.1Ач (100 мАч), ёмкость АКБ для беспилотных летательных аппаратов среднего размера может варьироваться от 2-3Ач (2000 мАч — 3000 мАч).

Чем выше ёмкость, тем дольше время полёта, и соответственно тяжелей АКБ. Время полёта обычного БПЛА может находится в интервале 10-20 минут, что может показаться недолгим, но вы должны понимать, что беспилотник в процессе полёта постоянно борется с гравитацией, и в отличие от самолёта, он не имеет поверхностей (крыльев) обеспечивающих помощь в виде оптимальной подъёмной силы.

Зарядка

Большинство LiPo аккумуляторов имеют два разъема: один предназначен для использования в качестве основных «разрядных» проводов, способных выдерживать большой ток, а другой, обычно меньшего размера и короче, является разъёмом для зарядки (как правило белый JST разъём), в котором один контакт соответствует заземлению, а остальные, количеству банок АКБ.

Его вы подключаете к зарядному устройству, посредством которого осуществляется зарядка (и балансировка) каждой банки батареи. Зарядное устройство обязательно должно сообщать, когда зарядка завершена, и, учитывать проблемы безопасности связанные с литий-полимерными батареями. После окончания процесса зарядки, лучше всего сразу отсоединять аккумулятор от зарядного устройства.

Защита несущих винтов

Защита несущих винтов – призвана исключить прямой контакт силовой установки БЛА с встречным объектом, сохранив тем самым её целостность и работоспособность, а также не допустить получение травм о быстро вращающиеся пропеллеры в результате столкновения с людьми и животными.

Защита пропеллеров крепится к основной раме. В зависимости от варианта исполнения может как частично перекрывать рабочую зону силовой установки, так и полностью (кольцевая защита). Защита винтов чаще всего применяется на небольших (игрушечных) БЛА. Применение в сборке элементов защиты несёт и ряд компромиссов, среди которых:

  • Может вызывать избыточную вибрацию.
  • Как правило выдерживает не сильные удары.
  • Может понизить тягу, если под пропеллером размещено слишком много крепёжных опор.

Как разобрать квадрокоптер

Приступать к работам следует после отключения аккумулятора. Его я полностью достал из квадрокоптера. Далее необходимо снять пластиковые стойки с нижней стороны аппарата, они просто вытягиваются из отверстий в корпусе. В оставшихся отверстиях находится четыре болта.

   После этого откручиваю два болта, крепящую пластиковую деталь над шестеренками. Это правая нижняя часть на рисунке, именно этот винт не крутится. Откручиваю винт, крепящий лопасть сверху, и снимаю ее.

Калькулятор ecalc

Многим создателям беспилотных моделей известен on-line калькулятор eCalc, предназначенный для расчёта параметров винтомоторной установки летательных аппаратов. Страница калькулятора, посвященная мультикоптерам, выглядит приблизительно так.

На первый взгляд, все понятно, но есть несколько нюансов, которые могут повлиять на результаты вычислений.

Прежде всего, вводится полный взлетный вес мультикоптера (с подвесом и камерой, если таковые имеются). Если будет указано Without Drive (Без привода), то вводим суммарный вес рамы, пропеллеров, платы контроллера, подвеса, камеры и оборудования для FPV полетов. Добавим процентов 10 на массу проводов и получаем искомую цифру.

Вводим количество роторов, их схему (одиночная или соосная), максимальную высоту полета и погодные условия, при которых он будет проводиться (температуру за бортом и атмосферное давление).

Из выпадающего списка выбирается нужный аккумулятор . Если необходимая батарея отсутствует, можно выбрать ближайшую по емкости и токоотдаче. Программа заполнит остальные поля самостоятельно. Задается структура и вес аккумулятора. Если предполагается параллельная установка нескольких АКБ, то в поле P вписывается их количество, а в окне Weight задается их общий вес.

Далее из выпадающего списка выбираются тип ESC или максимальный ток этих регуляторов.

Выбирается фирма-производитель двигателей. Появляется окно с его оценкой. По уровню KV подбирается конкретный образец.

Переходим к пропеллерам. Выбирается тип пропеллера, его диаметр и шаг. Рекомендуется использовать диаметр воздушного винта, максимально возможный для данной рамы. Если привод имеет зубчатую трансмиссию, то вводится ее передаточное число (отношение числа зубьев ведомой шестерни к числу зубьев ведущей шестерни).

Если нужные компоненты в выпадающих списках отсутствуют, можно перейти в строку Custom и ввести все необходимые данные в соответствующих полях калькулятора. Отметим, что параметры батареи задаются для одной ячейки.

Все поля заполнены, можно выполнять вычисления. Результат расчетов будет представлен в виде циферблатов, списков и графиков.

RashVinta– программа расчета диаметра воздушного винта для квадрокоптера.

Программа RashVinta позволяет производить вычисления по следующим исходным данным:

  • Мощность двигателя и диаметр винта;
  • Мощность двигателя и частота вращения винта;
  • Диаметр винта и его шаг.

В первом варианте отметка ставится только в поле «Расчет по диаметру винта». Задается размер пропеллера (в сантиметрах), мощность двигателя (в лошадиных силах), максимальная и средняя скорость летательного аппарата. Нажимается кнопка «Расчет». Результатом вычислений будут шаг и частота вращения винта.

https://www.youtube.com/watch?v=0kyBFN6mYKk

Во втором варианте убираются все галочки. В соответствующие окна вводим мощность двигателя, частоту вращения винта, максимальную и среднюю скорость летательного аппарата. Нажимаем кнопку «Расчет». Результатом вычислений будут диаметр винта и его шаг.

Третий вариант расчетов предназначен для профессионалов. Метка ставится в поле «Указать параметры винта». В соответствующие окна записываются диаметр и шаг винта. Нажимается кнопка «Расчет». Результатом является профиль лопасти воздушного винта, который можно изучить в окне просмотра, меняя его масштаб и удаление от ступицы. В виде таблиц результат сохраняется в файле Date.html, присутствующем в каталоге программы.

Кроме того, программа может показать, как выглядит профиль лопасти под реальным углом наклона (галочка в поле «Профиль с углом»), а также продемонстрировать точки, по которым производился расчет (метка в поле «Показывать расчетные точки»).

Полученный профиль можно распечатать в масштабе 1:1.

Количество и форма лопастей

Классическим вариантом является наличие у пропеллера двух лопастей. Впрочем, на самых маленьких моделях применяют воздушные винты с тремя, четырьмя и даже пяти лопастями. Понятно, что многолопастный воздушный винт снижает уровень турбулентности за счет создания более равномерного потока.

Более того, дополнительные лопасти увеличивают общую площадь винта, что благотворно отражается на подъемной силе квадрокоптера. Из этого следует, что многолопастный винт меньшего диаметра способен создавать ту же подъемную силу, что и более крупный классический пропеллер.

Советуем обратить внимание на разницу в форме окончания реквизитов. Они бывают трех видов – Normal, Bullnose (BN), Hybrid Bullnose (HBN). Винты Normal имеют заостренные на концах лезвия, создают меньшую тягу, но способствует эффективному расходу энергии аккумулятора.

Винты BN при равном диаметре имеют большую площадь и тягу. Дополнительный вес на кончиках лопастей увеличивает крутящий момент и улучшает чувствительность летательного аппарата по оси рысканья. К сожалению, эти положительные моменты сопровождаются высоким энергопотреблением и снижением времени полета. Пропеллеры HBN занимают промежуточную позицию.

Лайфхак по квадрокоптерам

Кошки – это очень характерные домашние животные, которые любят всё делать по-своему. Из-за этого хозяева сталкиваются с такими проблемами, как уничтоженные цветы, разбитые статуэтки и перегрызенные провода. И если в первых двух случаях становится просто обидно, то в третьем появляется реальный риск для здоровья, так как сломанный провод – это одна из главных причин короткого замыкания. Вот почему так важно вовремя понять, как отучить кота грызть провода.

В нашем adoption-центре не раз сталкивались с этой проблемой, поэтому выработали несколько советов, которые помогут отучить кошку или кота от вредной привычки.

1. Провода – это не игрушки

Любой кот, независимо от того, котёнок он или взрослая особь, очень любит играть. А провода, особенно от наушников, напоминают ему очень интересные и весёлые игрушки. Поэтому, чтобы отучить кошек грызть провода, стоит постараться сделать так, чтобы они не напоминали верёвочки и ленточки, с которыми так интересно играть, кусая и царапая коготками.

Чаще всего коты обращают внимание на те провода, которые просто болтаются. Они смотрят на них и видят потенциальную игрушку, с которой можно поразвлечься. Поэтому чтобы отбить у котёнка подобное желание, нужно сразу же, как только он появился в доме, постараться их максимально скрыть. Для этого все провода, которые идут вдоль стен закрывают мебелью. Если же речь идёт о компьютерных проводах, то их стоит закрепить так, чтобы они перестали быть настолько привлекательными для игр и покусывания.

2. Не бросайте повода на видном месте

Хозяевам придётся смириться с тем, что всё тонкое, напоминающее верёвки и ленточки вызывает у животного желание играть. Коты ведь хищники, которые реагируют на движущиеся объекты. К тому же, владельцы сами приучают их играться с верёвочками, а кошкам сложно понять, что наушники – это совсем не верёвочка, которая предназначена для забав.

Поэтому, если нет желания постоянно покупать новые наушники, наиболее правильным решением будет просто их спрятать. То же самое касается кабелей для зарядки. Чем меньше раздражителей будет в доме, тем меньше и поводов наказывать котёнка, который случайно перегрыз зарядку или любимые наушники.

3. Специальная оболочка – лучшая защита

Когда котёнок хочет грызть провода, за ним сложно уследить. Поэтому, чтобы не тратить время, нервы и силы на постоянный тотальный контроль над животным, можно использовать специальные защитные оболочки. Причём не обязательно покупать что-то дорогостоящее. Например, для защиты кабелей отлично подходят шланги, применяемые в аэрации аквариумов. Ну а те хозяйки, которые любят заниматься рукоделием, вообще могут поступить очень креативно – пошить на все провода специальные чехлы.

Если же у владельцев нет времени и возможности придумывать и покупать специальную защиту, можно выбрать самый простой вариант – изоленту. Несколько слоёв этой клейкой ленты станут хорошей защитой от коготков кота. Правда, если для животного желание перегрызть провод становится идеей фикс, изолента не продержится долгое время и всё же придется искать альтернативные варианты.

4. Коты не едят то, что для них пахнет плохо

Для котов очень важны запахи и вкусы. Поэтому, если провод источает аромат, который раздражает животное, оно не станет его грызть и кусать. Существует много вариантов, которые можно найти в магазинах и аптеках. Более подробно о них расскажем далее. Главное – выбрать то, что не навредит животному и не станет раздражать всех, кто находится в помещении. Так как у котов более чувствительный нюх, для них подойдут даже те запахи, которые люди попросту не замечают.

5. Рефлексы – это важно

Как и у любых животных, у котов есть рефлексы, и если их правильно выработать, то можно избавиться от хлопот раз и навсегда. Главное – помнить о том, что животное ни в чём не виновато, и его нельзя ругать. Криками на животное вы от него ничего не добьётесь.

В нашем adoption-центре работники давно поняли, что коты просто не понимают, почему им запрещают трогать провода. Даже самое умное животное не способно осознать, что своими действиями оно портит технику и создаёт реальную угрозу. Поэтому крики тут ничем не помогут. Вместо этого у животных должна выработаться взаимосвязь между их действиями и негативными последствиями.

В этом случае очень хорошо помогает пульверизатор, так как вода – это один из самых главных врагов кошек. Каждый раз, когда хозяин замечает, что котик начинает тянуться к проводам, его нужно легонько побрызгать из пульверизатора. Животное от этого не пострадает, но со временем у него разовьётся рефлекс: дотронусь до провода – буду мокрым. Благодаря такому нехитрому способу можно отучить кота грызть провода, не нанося ему никакого физического ущерба. А это очень важно, ведь хороший хозяин никогда незахочет обидеть и сделать больно своему любимцу.

Средства для защиты проводов

Теперь подробнее поговорим о средствах, которые применяют для обработки проводов.

Это могут быть:

– алоэ;

– горчица;

– эфирные масла;

– лимонные корки;

– специальные средства (спреи типа “Антигрызин”).

Лимон – это самый быстрый, но недолговременный способ, поскольку запах быстро выветривается. Его можно применять в том случае, когда срочно нужно оставить кошку наедине с проводами, и есть риск, что по возвращению хозяева обнаружат настоящую катастрофу. То же самое касается и горчицы.

Эфирные масла держатся дольше, поэтому их можно использовать в тех случаях, когда сильный запах не раздражает самих хозяев.

Наиболее удобные варианты – это алоэ и спрей.

Плюсы спреев состоят в следующем:

1. Они обладают цитрусовым запахом, приятным для людей и раздражающим для котов;

2. Продаются во всех ветеринарных аптеках и зоомагазинах;

3. Подходят как для кабелей, так и для ковров и обоев.

Такой спрей – это универсальное средство, которое помогает не только отучить грызть провода, но и гадить на коврах, рвать обои.

Не менее эффективным является и сок алоэ. Он очень горький, поэтому попробовав “на вкус” провода, обработанные соком алоэ, питомцы очень долго не захотят подходить к ним снова.

Мы считаем важным предупредить владельцев, что способ обработки проводов при помощи сока алоэ является достаточно жёстким. Коту или кошке будет очень неприятно. К тому же, у него может начаться сильное слюноотделение, в этом случае ротовую полость животного необходимо прополоскать водой.

Какой бы метод не был выбран, нужно помнить о том, что животное не виновато, и им движут рефлексы, так что придётся набраться терпения и постараться не слишком злиться на домашнего любимца. Однако никакие сложности адаптации не сравнятся с радостью, которую испытывает человек при появлении кошки в доме.

Материал и качество

Наиболее популярны пластиковые винты. Они отличаются пластичностью, низкой ценой, широким ассортиментом и высокой степенью доступности. С одной стороны, гибкость лопастей повышает их устойчивость к повреждениям, с другой – вызывает проблемы с балансировкой.

Некоторые фирмы выпускают винты из углеродного волокна. Карбоновые винты довольно дороги, но обладают необходимой жесткостью и высокой эффективностью без значительного увеличения веса.

Промежуточное положение занимают пропеллеры, выполненные из пластика, усиленного углеродным волокном. Этот тип пропеллеров обладает высокой жесткостью и сравнительно низкой стоимостью.

Качество винтов подразумевает точность их изготовления. Высококлассные пропеллеры хорошо сбалансированы и практически не вносят дополнительную вибрацию в работу ВМГ. Лучшие реквизиты выпускаются под брендами GWS, APC и EMP.

Материалы исполнения

Материал(ы), используемые для изготовления несущих винтов (пропеллеров), могут оказывать умеренное влияние на лётные характеристики, но безопасность должна быть главным приоритетом, особенно если вы новичок и не опытны.

  • Пластмасса (ABS/Нейлон и т.д.) — является самым популярным выбором, когда речь заходит о многомоторных БЛА. Во многом это связано с низкой стоимостью, достойными лётными характеристиками и показательной долговечностью. Как правило в случае краша, по крайней мере, один пропеллер оказывается сломанным, и пока вы осваиваете дрон и учитесь летать, у вас всегда будет много сломанных пропов. Жёсткость и ударопрочность пластикового винта может быть улучшена посредством усиления углеродным волокном (карбон), такой подход макс. результативен и не так дорог по сравнению с винтом полноценно исполненным и карбона.
  • Фиброармированный полимер (углеродное волокно, нейлон усиленный карбоном и т.д.) — является «передовой» технологией во многих отношениях. Детали из углеродного волокна всё ещё не очень просты в изготовлении, и поэтому вы платите за них больше, чем за обычный пластиковый винт с аналогичными параметрами. Пропеллер изготовленный из углеродного волокна сложнее сломать или согнуть, и, следовательно, при краше, он нанесёт больший ущерб всему, с чем соприкоснётся. Одновременно с этим, карбоновые винты, как правило, хорошо сделаны, более жёсткие (обеспечивают минимальные потери в эффективности), редко требуют балансировки и имеют более лёгкий вес по сравнению с любыми другими материалами исполнения. Такие винты рекомендуется рассматривать только после того, как уровень пилотирования пользователя станет комфортным.
  • Дерево — редко используемый материал для производства несущих винтов многороторных БЛА, поскольку для их изготовления требуется механическая обработка, которая в последствии делает деревянные пропеллеры дороже пластиковых. При этом дерево вполне прочное и никогда не гнётся. Отметим, что деревянные пропеллеры всё ещё применяют на радиоуправляемых самолётах.

Напряжение

На практике вам потребуется только один аккумулятор для вашего БПЛА. Напряжение этой батареи должно соответствовать выбранным вами БК моторам. Почти все АКБ, используемые в наши дни, основаны на литии и содержат несколько элементов (банок) по 3.7В каждая, где 3.7В = 1S (т.е однобаночная АКБ;

2S – двух баночная и т.д.). Поэтому батарея с маркировкой 4S, вероятно, будет иметь номинальное значение: 4 × 3.7В = 14.8В. Также количество банок поможет вам определить, какое зарядное устройство необходимо использовать. Отметим, что однобаночная батарея большой ёмкости физически может выглядеть как многобаночная батарея низкой ёмкости.

Несущие винты (пропеллеры)

Несущие винты (пропеллеры, сокр. пропы) для многороторных БЛА берут своё начало от винтов радиоуправляемых самолётов. Многие спросят: почему бы не использовать лопасти вертолёта? Несмотря на то, что это уже было сделано, представьте себе размеры гексакоптера с лопастями от вертолёта. Также стоит отметить, что вертолётная система требует изменения шага лопастей, а это существенно усложняет конструкцию.

Вы также можете спросить, почему бы не использовать турбореактивный двигатель, турбовентиляторный двигатель, турбовинтовой двигатель и т.д? Безусловно они невероятно хороши для обеспечения большой тяги, но при этом требуют большое количество энергии.

По форме лопасти бывают:

  • Normal (N) — с заостренными концами. Уменьшают силу тяги, снижают расход энергии батареи;
  • Bullnose (BN) — закругленные края. Обладают большей площадью, создают больше тяги. За счет дополнительного веса на кончиках обеспечивают стабильность аппарату, увеличивают отзывчивость по рысканию — вращению вокруг вертикальной оси квадрокоптера. Минус — высокое энергопотребление, небольшая продолжительность полета;
  • Hybrid Bullnose (HBN) — среднее между BN и N.

Винты вращают электродвигатели, половина которых крутится по часовой стрелке (CW), а другая половина — против нее (CCW). Определить направление вращения можно по поднятой кромке лопасти, которая смотрит в сторону вращения.

Вращаясь, пропеллер разгоняет воздух вокруг себя, толкает его вниз, где создается более высокое давление, чем окружающая атмосфера. Разница давлений поднимает квадрокоптер вверх.

Пластиковые пропеллеры — самые распространенные и недорогие. Гибкие винты устойчивы к повреждениям, но часто возникают проблемы с их точной балансировкой, что вызывает нарушение в работе гироскопов и отражается на качестве отснятых камерой кадров. Углеродное волокно (карбон) считается лучшим материалом для пропов.

Карбоновые винты стоят не дешево, но это оправдано — прочные, жесткие лопасти не утяжеляют вес коптера, не теряют свою форму, их легко сбалансировать. Пластик, усиленный карбоновым волокном, по прочности сравним с карбоном, а по цене — с обычным пластиком.

Поиск неисправности дрона

   Первое, в исправности чего возникли сомнения – двигатель. Для его проверки достаточно было подключить к источнику питания и проверить вращается ли он. Извлекаем из своего посадочного места, перекусываем два провода питания.

Питаются моторчики от Li Po (литий-полимерный) аккумулятора, напряжение на котором 3,7 вольт. Подключив к блоку питания, обнаружил, что мотор потребляет большой ток, около 2 ампер, но сам не вращается, зато происходит сильный его нагрев. Это говорит о том, что двигатель неисправен, его необходимо заменить.

Правила установки винта на дрон

В комплект квадрокоптера входят детали для сборки, в том числе лопасти и защита. Как их установить? С защитой все предельно просто — найдите паз на луче дрона, вставьте в него рамку детали до упора.

Чтобы правильно установить пропеллеры на квадрокоптер, внимательно следите, какой винт куда ставить. На моторе есть обозначения направления вращения двигателя (буквы, метки). Такая же маркировка стоит и на лопастях. Эти маркировки должны совпадать.

Пример установки пропеллера на коптеры Syma, QS UAV:

  1. Устанавливаете винт на вал.
  2. Ставите пластмассовый фиксатор, совмещаете выемки.
  3. Придерживая лопасти, поворачиваете их до щелчка — с меткой А по часовой стрелке, с меткой Б — против часовой стрелки.
  4. Сверху ставите защитный колпачок (заглушку).

Чтобы снять пропеллер, снимите заглушку, поверните фиксатор против часовой стрелки и снимите его. Потяните вверх за винт и снимите его с вала.

Существенно облегчают установку быстросъемные адаптеры для пропеллеров. Переходник состоит из двух частей — одна крепится на мотор, другая — на винт. Пропеллер легко накручивается на двигатель правого или левого вращения и так же снимается. Такой вариант удобен для частой перевозки квадрокоптеров, например, на соревнования.

Винты, которые вы покупаете отдельно, идут в наборе по 2, 4, 6 штук. Есть лопасти с интегрированной гайкой прямого и обратного вращения для быстрой установки и съема, предотвращающей их откручивание в полете.

Если двигатель — просто штырь, без дополнительных элементов для сборки, вам понадобятся втулки-переходники, которые ставят на вал и затягивают болтами. Сверху поставьте пропеллер, закрепите его нейлоновыми стяжками или резиновым кольцом.

Еще один вариант крепления — цанговый зажим. Цангу поставьте на вал, затем — зажимную втулку с пропеллером и шайбой, зафиксируйте конструкцию коком (гайкой особой формы).

Принцип работы винтов

  • длина винта — диаметр диска, образующегося при вращении пропеллера. Чем она больше, тем больше подъемная сила дрона, тем мощнее нужен мощнее мотор;
  • шаг — расстояние, пройденное винтом за один оборот (зависит от угла наклона лопастей), указывает на объем воздуха, попадающего под пропеллер за один оборот.

Размеры винтов, допустимые для установки, указаны в инструкции к двигателю (например 1045″ — диаметр 10 дюймов, 4,5 дюйма — шаг).

Лопасти расположены под определенным углом наклона, который влияет на сопротивляемость воздуху. Пропеллер с большим углом наклона поднимает копетр вверх за один оборот, но при этом сильно нагружает мотор. Для разгона и маневренности нужен менее энергозатратный угол наклона.

Уменьшая длину винта и увеличивая шаг, снижаем сопротивление воздуха и повышаем скорость подъема беспилотника. Если сделать наоборот, динамические характеристики дрона снижаются, но зато повышается его грузоподъемность, стабильность полета.

Пропы делают 2-5-ти лопастными. Чем их больше, тем стабильнее дрон держится в воздухе. Главный недостаток многолопастных пропеллеров — сложность балансировки.

Проверка и калибровка

   Завершив ремонт, заменив мотор, свинчиваем корпус винтиками. Устанавливаем на свое место винт и крепим его. Не исключено, что для нахождения квадрокоптера в устойчивом горизонтальном положении необходимо будет откалибровать дрон с помощью пульта.

   Запускаем его, установив на ровной поверхности пола. Видим – что моторчик вращается, игрушка готова взлетать в воздух.

   Ради интереса решил разобрать старый неисправный моторчик. На обмотке явно видны следы сгоревшего провода.

Расчет коптера — wiki о коптерах

полётная масса
Эмпирика прикидки максимальной массы мультироторных коптеров от габаритов платформы или длины диагонали между моторами при условии максимально вписанных винтов—– масса в кг равна десять умножить на диагональ в метрах в квадрате—–м=10d2—-
например при диагонали 32 см или 0.32 метра получаем 10 х (0.32)х0.32=10х0.1=1 кг типично для 8 дюймовых вмг—-
или при диагонали в 1 метр получим 10 кг приемлимой максимальной полетной массы!
можно решить и обратную задачу——заказчик просит спроектировать мультиротарную платформу на 10 кг полезной нагрузки——значит масса полётная будет 4х10 кг =40кг , тогда сразу прикидываем что размер диагонали равен корень квадратный из 40/10 или корень из 4 и получаем 2 метра!

Академический метод расчета мощности электро вмг по тяге в режиме висения в полгаза —-
1) желаемая тяга в ньютонах делить на ометаемую площадь винта в метрах квадратных—нагрузка в паскалях!
например хочу получить 500 г силы = 5 н тяги на стопе с винта диаметром 10 дюйм или 5 дм2 =0.05 м2—–получаем нагрузку 5н/ 0.05м2=100 н/м2!

2) корень квадратный из соотношения нагрузки к плотности среды—это скорость потока метры в секунду в плоскости винта!
корень квадратный из соотношения 100 н/м2 /1.23 кг/м3=( 81)0.5=9 м/с!!!

3) потребляемая электро мощность на среднем газу в ваттах с учётом кпд вмг —-это произведение тяги на скорость делённое на кпд электро-вмг!———–где КПДвмг =40% у мелких квадриков диагональю до 25см, КПД=50% у средних коптеров с диагональю до 50см, КПД=60% у больших до 100см, КПД=70% у крупных квадрокоптеров с диагональю свыше 2м

потребляемая моща в полгаза равна 5 н х 9 м/с / 0.66=67.5 ватт—–это эквивалентно мотору массой 65-70 грамм !

4) для режима статики удобно применять эмпирическое выражение зависимости геометрии двухлопастного винта и размеров статора многополюсного бк электромотора как произведение диаметра на шаг пропеллера в см эквивалентна произведению диаметра на длину статора в мм D(см)H(см)=d(мм)l(мм)—- например 25,2см х12,6см=318=22мм х14.4мм

эффективность по тяге при висении
эмпирическая зависимость для модельных размеров пропеллеров мультироторов в полгаза, диаметр винта в дюймах приблизительно равен максимальной удельной тяге электро-вмг например 3дюйм=3 грамм на ватт—-4д=4г/вт—-5д=5г/ вт—-6д=6 г/вт и так далее вплоть до 15д!

Обычно наибольшую эффективность по удельной тяге показывают двухлопастные пропеллеры—-но при ограничении габарита по диаметру из-за конструктива используют трёх и четырех лопастные для повышения тяговооруженности при том же моторе и акку!
Также многолопастные винты лучше работают в турболизированом потоке от ветра в приземленном слое—по причине
меньшей паразитной пульсации давления при проходе лопастями секторов ометания в косом потоке и пересечении луча!
Как результат —–меньше трясёт весь аппарат, корректней работает АП и видеокартинка не дерганая!

косой поток
Коптер при движении в горизонте относительно воздуха летит благодаря наклону оси винта от вертикали в направлении полёта —этот режим вызывает косой обдув на плоскость вращения винта——явление очень сложное с точки зрения мгновенного аэродинамического обтекания каждого фрагмента лопасти в зависимости от сектора расположения лопасти!
В классическом одновинтовом вертолёте для адаптации к косому обдуву придумали автомат перекоса угла установки лопастей в зависимости от сектора—-при этом лопасть начинает работать как крыло и частично разгружает мотор по потребляемой мощности в полтора раза правда только в узком диапазоне горизонтальной скорости —-называется крейсер ! В мультироторах винту с фиксированным шагом удаётся адаптироваться благодаря упругому динамическому кручению лопасти из эластичного материала типа термопластика плюс-минус пару градусов—-разгрузка мотора на крейсере около 1.1-1.2 раза относительно режима висения!Форма,профиль и крутка лопасти у коптерных винтов оптимизированных для работе в косом потоке имеют свою специфику и мало подходят для других задач—-тоесть плохо работают на самолётах!!!

минимальная скорость крейсера тождественна скорости потока через винт в режиме висения для квадрокоптера v=(mg )0.5/2D,

Например  квадрик полётной массой 800грамм с винтами диаметром 10  дюйм или 0.25 м-----то 
корень квадратный из веса в 8 ньютон делить на 2х0.25 м ----получаем 2.8/0.5=5.6 метра в секунду!
Тогда диапозон крейсерских скоростей 5-8 м/с или 18-29 км в час, а поглащённая мощность висения или потока в штиль равна вес 8 н х 5.6 мвс=44.8 вт-----потребляемая моща 44.8 вт делить на кпд вмг 66% или 0.66 равна 70 вт !        
В горизонтальном полёте на крейсере около  6 м/с мощность упадет до 0.9 мощности висения или 63 вт, так как  

винт в косом потоке начинает работать как крыло в набегающем потоке! А вот при максимальной скорости полёта в два раза выше, чем скорость потока при весении потребляемая мощность вмг вырастет также в 2 раза!

Угол наклона коптера при висении в ветер, то есть неподвижно земле, как раз указывает истинную скорость потока относительно воздуха или силу ветра! 

Тогда скорость можно принять как половину от угла наклона или например 0.5 х10 град=5 метров в секунду для большинства мультиротарных коптеров! На практике если наклон при висении более 15-20 град например на высоте 100 метров и выше, то ветер уже критичный для невозврата против ветра——выход жаться к земле, где ветер слабее 1.5 раза и огородами ползти домой! Воздушная скорость коптера эмпирически это произведение шага на частоту—– Vпол=Hf !

Парадокс работы винта в косом потоке для мультироторных платформ заключается в следующем —–максимальная воздушная скорость ла определяется скоростью потока, как произведение геометрического шага винта на частоту вращения и равна именно скорости потока в плоскости винта несмотря на то что ось или вектор тяги не параллелен движению самого коптера по сравнению с самолетом,а развернут под большим углом к горизонтали и почти вертикальный 60-80градусов—-получается что
струя воздуха относительно коптера выворачивается из прямой классической воронки при висении в змееобразную загогулину похожую на раструб саксафона засасывающего набегающий поток с трансформацией скоростей в горизонтальную составляющую!

“10 заповедей” авиаконструктора квадрокоптера(дрон)

1) масса полётная это четыре массы полезного груза mпол=4mгруз, где m(рамы авионика)=mвмг=mакку=mгруз

2) диагональ между моторами в сантиметрах это корень квадратный из полётной массы дрона в граммах L=(m)0.5

3) удельная тяга винта (грамм/ватт) в режиме висения на полгаза равна диаметру пропеллера в дюймах D(дюйм)=m/Рпот

4) скорость крейсера в горизонтальном полёте равна скорости потока через винт при весении Vкр=Vвис(м/с)=5(m(г))0.5/D(см)

5) мощность потребления вмг при весении равна полтора произведения массы на скорость потока Pст=UаккуIст=0.015m(г)Vвис

6) напряжение аккумулятора эмпирически корень квадратный из одной десятой полётной массы в граммах Uакку(в)=(0.1m)0.5

7) перегрузка на ла или относительный запас тяги это максимальная тяговооруженность —- Fст(г)/m(г)=Kт=2–4единицы

8) относительный запас скорости полёта это корень в степени 0.66 из тяговооруженности Kск=(Kт)2/3——тогда Vмах=VвисKск

9) коэф.полезного действия электро-вмг в горизонтальном полёте на полном газу 50% —–Pпотреб=0.02m(г)Vмах=UаккуIпол

10) произведение диаметра и шага двухлопастного винта в см равно произведению диаметра и длины статора бк в мм DH=dl

методика расчёта предложена Книжниковым ВВ

Ремонт (замена) моторчика дрона

   Ремонт квадрокоптера заключается в замене одного из его коллекторных двигателей. Подобрав аналогичный моторчик, устанавливаем шестеренку на вал. Налезать она должна с небольшим усилием.

   Обрезаем провода до нужной длинны. Залуживаем их и спаиваем с теми, которые идут от квадрокоптера. Не забываю изолировать их с помощью термоусаживаемой трубки.

   Двигатель с насаженной шестеренкой устанавливаем на свое место в корпусе квадрокоптера, следим при этом, чтобы зубья вошли в зацепление со второй шестеренкой.

Складные

Складные пропы имеют центральную часть, которая соединяется с двумя поворотными лопастями. Когда центр (который соединен с выходным валом мотора) вращается, центробежные силы действуют на лопасти, выталкивая их наружу и по существу делая пропеллер «жёстким», с тем же эффектом, что и классический не складываемый винт.

Из-за низкого спроса и большого количества требуемых деталей, складные пропеллеры встречаются реже. Основное преимущество складных пропов это компактность, а в сочетании со складной рамой, транспортировочные размеры дрона могут быть значительно меньше полётных.

Спецификация

Узнать о параметрах конкретного пропеллера для квадрокоптера можно по его кодировке. Производители используют два типа обозначений: LLPPxB или LxPxB. Здесь L обозначает длину, P – шаг, а B – количество лопастей. Для классических пропеллеров параметр B обычно не указывается.

Например, пропеллер 6045 (или 6×4,5) имеет две лопасти, шестидюймовую длину и шаг 4,5 дюйма. Другим примером является пятидюймовый трехлопастный пропеллер 5040×3 (или 5x4x3), имеющий шаг 4 дюйма.

Иногда в конце обозначения ставится буква R или C (может отсутствовать), определяющая направление вращения. Воздушные винты R устанавливаются на двигатели CW, а C – на моторы CCW. Изредка к обозначению добавляются аббревиатуры BN или HBN (см. выше).

Установка

Как и БЛА, несущие винты могут имеют широкий диапазон размеров. Таким образом, в этой отрасли существует целый ряд «стандартных» диаметров вала двигателя. В связи с чем несущие винты часто поставляются с небольшим набором переходных колец (выглядят как шайбы с отверстиями разного диаметра в центре), которые устанавливают в центральное посадочное отверстие пропа, в случае если диаметр отверстия несущего винта оказался больше диаметра вала используемого мотора.

Фиксироваться винт на моторе может исходя из того, какой из способов крепления поддерживает ваш мотор. Если вал мотора не подразумевает никаких вариантов крепежа (резьб. соединение, различные приспособления для крепления и т.д.), в таком случае применяются специальные адаптеры, такие как пропсейверы и цанговые зажимы.

Бесколлекторные моторы с наружным ротором (типа «Outrunner») как правило, в верхней его части, имеют несколько резьбовых отверстий рассчитанных под установку различных адаптеров и креплений. Не менее популярным вариантом крепления пропеллера на валу БК мотора является самозатягивающая гайка.

Установка винтов квадрокоптера. дрон — как правильно установить лопасти винты. сборка квадрокоптера

В этом видео рассказывается как правильно установить винты на квадрокоптер syma, как их правильно закрепить и не перепутать направление вращения. Многие не правильно устанавливают винты, т.е. без учёта направления вращения и потом жалуются, что квадрокоптер не взлетает.

Дрон — квадрокоптер будет себя вести не адекватно, если вы перепутаете направление вращения винтов или моторов при их замене. Если же вы правильно установили винты, то у вас никогда не возникнет проблемы, что квадрокоптер не взлетает, при условии, что все двигатели работают исправно и не перепутана их установка.

Поэтому, прежде чем паниковать и думать что делать если квадрокоптер не взлетает, проверьте правильность установки винтов и направление их вращения и ваша проблема с большой степенью вероятности будет решена. Смотрите как правильно собрать винты квадрокоптера и наслаждайтесь полётом.

Vitalik Havriluk Hace 16 días

Не взлітає що робити

Vyachek-Life Hace 6 días

То треба шукати проблему. Дуже мало iнформацii.

Liz Mitchel Hace 9 meses

у него тонкий вал мотора! и без надпилов!

PHANTOMKA Hace 11 meses

То есть спереди 2 винта А,сзади 2 винта В ?Показано только одна сторона,а на второй как?

Vyachek-Life Hace 11 meses

На кавадрике должно быть подписано куда какие винты ставить. Если я не ошибаюсь, А и В чередуются, т.е. стоят по диагонали друг от друга, но за точность не ручаюсь. Квадрик уже давно продал.

не рванет? Hace un año

Спасибо а-то я думал что квадрокоптера сломался а оказывается винты неверно поставил

Оцените статью
Радиокоптер.ру
Добавить комментарий