Как выбрать модель (вес, площадь крыла) под мотор? Или пример использования калькуляторов? — Паркфлаер

Как выбрать модель (вес, площадь крыла) под мотор? Или пример использования калькуляторов? —
 Паркфлаер Лодки

С чего начинается конструирование крыльев

В начале конструирования на кальке был сделан предварительный эскиз самолёта в натуральную величину. В ходе этого этапа я определился с масштабом модели и с размахом крыльев.

Теория по основам конструирования крыльев

Конструкция крыла должна обеспечивать достаточную подъёмную силу для веса самолёта и дополнительных нагрузок, связанных с маневрированием. В основном это достигается с помощью использования центрального лонжерона, который имеет два пояса, верхний и нижний, каркаса, а также тонкой обшивки.

Несмотря на то, что каркас крыла тонкий он обеспечивает крылья достаточной прочностью на изгиб. Также в конструкцию часто входят дополнительные лонжероны для уменьшения лобового сопротивления в передней части задней кромки. Они способны воспринимать как изгибающие нагрузки, так и увеличивать жесткость при кручении.

  1. Верхнее крыло имеет лонжерон двутаврового сечения, у которого каркас располагается в центре, а также переднюю кромку с обшивкой, которая называется D – трубкой. D – трубка позволяет увеличить жесткость при кручении, и может быть добавлена к любым другим конструкциям лонжеронов, а также может быть расширена до задней кромки для создания полностью обшитого крыла. У данного крыла задний лонжерон просто является вертикальной опорой. Также имеется простая плоскость управления, проще говоря, закрылок, подвешенный шарнирно вверху. Такую конструкцию легко воспроизвести.
  2. Второе крыло имеет C – образный лонжерон, который имеет усиленный основной лонжерон, лучше приспособленный для восприятия лобовых нагрузок. Крыло снабжено центральным шарниром, который уменьшает щель, а также лобовое сопротивление по сравнению с верхним шарниром.
  3. У третьего профиля лонжерон в виде трубы, такие обычно делаются из пластиковых трубок, их удобно изготовлять, но если трубки непрямые или скрученные, то скрутить крыло может стать проблемой. Частично проблему можно решить, используя дополнительно D – образную трубку. Кроме того, лонжерон сделан из С – образного профиля, что значительно увеличивает жесткость крыла. Петля представляет собой округленный профиль с точкой разворота в центре закругленной передней кромки для уменьшения петельной щели и для ровных краев.
  4. Четвертый профиль имеет полностью коробчатый лонжерон с каркасом как спереди, так и сзади. Зазор имеет ту же особенность, что и предыдущий профиль, и ту же самую плоскость управления. Но у него есть обтекатели сверху и снизу для скрытия щели.
Смотрите про коптеры:  DJI Mavic Mini: пошаговая инструкция по разборке и сборке дрона

Все эти конструкции крыльев являются типовыми для лонжеронов и для создания крепежных петель у радиоуправляемых самолётов. Эти конструкции без исключения являются единственным способом технической реализации закрылков и элеронов, а другие различные решения можно подогнать к ним же.

C – образный или коробчатый лонжерон?

Для своего самолёта я выбрал деревянный C – образный профиль лонжерона с прочной передней кромкой и простым вертикальным лонжероном. Полностью крыло обшито бальзой для создания жесткости при кручении и для эстетики.

Дерево было выбрано взамен пластиковой трубки поскольку самолёт спроектирован с 2 градусным внутренним углом, а соединение в виде пластиковой трубки в центре крыла не сможет долго сопротивляться изгибающим нагрузкам. C – образный профиль лонжерона является также более благоприятным по сравнению с двутавровым профилем, поскольку в лонжероне должен быть сделан слот на всю его длину для установки в решетку.

Эта добавленная сложность не за счет заметного увеличения прочности и соотношения веса лонжерона. Коробчатый лонжерон также был отвергнут, поскольку он сильно увеличивает вес, однако, его не так сложно построить, а по прочности он один из лучших. Простой вертикальный лонжерон, совмещенный с петлевым обтекателем, вот таким был выбор конструкции крыла, когда остальная часть крыла обшита и достаточно прочна без каких либо дополнительных опор.

  • Лонжерон. Лонжерон крыла спроектирован для восприятия изгибающей нагрузки от подъёмной силы крыла. Он не предназначен для восприятия скручивающей силы, созданной аэродинамическими силами крыла, а нагрузка ложится на обшивку крыла. Это распределение нагрузки подходит для легкой и очень эффективной нагрузки, поскольку каждая деталь занимает именно своё место.
  • Полки лонжеронов крыла выполнены из броска липы размерами ¼ x ½ x 24’’. Липа была выбрана в качестве материала, поскольку хорошо обрабатывается и имеет хорошую прочность для своего веса. Кроме того, подкупает простота приобретения брусков подходящего размера в специализированных магазинах, поскольку у меня не было под рукой деревообрабатывающего станка для распиловки досок.
  • Каркас крыла сделан из липового листа, толщиной 1/32”, который крепится к полкам лонжеронам сверху и снизу. Подобный каркас является необходимостью поскольку он кардинально улучшает жесткость и прочность крыльев даже при очень малом весе.
  • Задняя кромка крыла/задний лонжерон выполнен из бальзового листа толщиной 1/16”, что помогает добавить жесткость при кручении, а также унифицировать нервюры крыла и крепить плоскости управления к задней части нервюр.
Смотрите про коптеры:  Советы по ремонту и обслуживанию квадрокоптеров, о которых вы должны знать

Flight time & route calculator

If you are looking for a flight time calculator, we’ve got the ideal tool. Our free online calculator can be used as a flying route and fuel planner for any round trip, multi-stop, or one-way flight.
The information it provides for your potential or operational flight plan includes distance, fuel consumption, and anticipated cost — with the information delivered to you instantly.

It can be used by anyone, whether you are looking for an air distance and price calculator to help improve the service you offer to private jet charter clients or if you want to check a flight you will be taking personally.
It is also a suitable flight time calculator for commercial pilots. Whatever your requirements, you will save considerable time by using our calculator instead of retrieving the information manually.

Our aviation flight path and route planner was designed to provide the most accurate information possible.
We achieved this by incorporating multiple data sources, including real-world data sources collected over many years as well as data from aircraft manufacturers.
When you work out the time of flight calculations using our tool, you will see estimates based on more than 500 different aircraft.

The information you will get when you use our calculator includes: flight time, flight distance, route, fuel consumption, the impact of wind, airport time differences, IFR flight route, charter flight cost estimate.

All the above data will be made available to you in seconds, saving you days of work every month—time you can spend on improving your business and the service you offer to clients.
You’ll also get information on related services when you use our calculator tool.
That information includes details on handling and fuel suppliers, caterers and FBO suppliers applicable to your flight.

Выбор правильного аэродинамического профиля

Выбор правильного профиля определяет правильное поведение самолёта в воздухе. Ниже я привожу ссылку на простой и доступный инструмент для проверки аэродинамических профилей. В качестве основы для выбора профилей я выбрал концепцию, согласно которой длина хорды на законцовке крыла равна половине длины хорды в корневой части.

Наилучшее решение того, чтобы не допустить срыв потока на крыле, которое я нашел, заключалось в резком сужении крыла на законцовке без возможности сохранения управления самолётом до набора достаточной скорости. Я добился этого с помощью разворота крыла вниз на конце и через тщательный подбор корневых и концевых профилей.

В корне я выбрал аэродинамический профиль S8036 с толщиной крыла в 16% от длины хорды. Такая толщина позволила заложить лонжерон достаточной прочности, а также выдвижные шасси внутри крыла. Для концевой части был выбран профиль – S8037, который также имеет толщину в 16% от толщины хорды.

Такое крыло будет уходить в срыв при большом коэффициенте подъёмной силы, а также при большем угле атаки, чем S8036 при том же числе Рейнольдса (этот термин служит для сравнения профилей разного размера: чем больше число Рейнольдса, тем больше хорда).

Это значит, что при том же числе Рейнольдса в корневой части крыла срыв произойдет быстрее, чем на законцовке, но контроль за управлением сохранится. Однако, даже если длина хорды корня в два раза больше длины хорды законцовки, она имеет число Рейнольдса в два раза большее, а увеличение числа приведет к задерживанию сваливания. Именно поэтому, я развернул законцовку крыла вниз, так что оно перейдет в сваливание только после корневой части.

Как выбрать модель (вес, площадь крыла) под мотор? или пример использования калькуляторов?

Почему-то получается что сначала клеится моделька (потолочка), а потом начинаешь думать какой мотор в неё вставить. Практически, опытным путём (этот хорошо летает, этот вроде с трудом таскает).

Надоело.

Хочу попробовать от обратного, и с бОльшей теоретической базой. Ещё до постройки примерно представлять что и какое это будет.

Например, есть моторчик 

Turnigy L2210-1400 Bell Style Motor (210w)

, 2210, 1400 об/в, 210Вт, есть разные липольки 3S от 600 до 2200. Как понять (какую-нибудь краткую инструкцию, понятное описание, возможно пример) какого веса/размера банальный плосколёт нужно построить для небыстрых полётов в ограниченном пространстве (условно говоря — пустырь возле дома), с возможностью висения на винте.

Чтобы потом не получилось что “не таскает” (не хватило мощности) или “летает как метеор” (большая нагрузка на крыло). 

Каким калькулятором нужно пользоваться, какие параметры вводить, какие рассчитывать, на что смотреть?

Комплектация деталей

После конструирования крыла, анализа и подбора всех необходимых для изготовления авиамодели деталей, был сделан список всего необходимого для постройки.

Нет похожих материалов.

Определение размаха

Когда предварительный размах крыла был утвержден, наступило время для определения веса. Эта часть расчета имела особое значение. Первоначальный план включал в себя размах крыльев в 115 см, однако, предварительный расчет показал, что нагрузка на крыльях будет слишком высокой.

Поэтому я масштабировал модель до размаха в 147 см без учета законцовок крыльев. Такая конструкция оказалась более подходящей с технической точки зрения. После расчета мне осталось сделать весовую таблицу со значениями весов. В свою таблицу я также добавил усредненные значения веса обшивок, например, вес бальзовой обшивки самолёта был определен мной, как произведение площади крыла на два (для низа и верха крыла) на вес квадратного метра бальзы.

В результате я получил следующие данные:

  • Липа, 24 унции на кубический дюйм
  • Бальза 1/32’’, 42 унции на квадратный дюйм
  • Бальза 1/16’’, 85 унций на квадратный дюйм

Проектирование нервюр с помощью autoсad

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных.

Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла.

В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла.

Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2023 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y.

Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки.

Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле.

Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Устойчивость

После определения веса были рассчитаны параметры устойчивости для того, чтобы убедиться, что самолёт будет устойчивым и все детали будут адекватного размера.

Для устойчивого полёта необходимо было обеспечить несколько условий:

  1. Первый критерий — значение средней аэродинамической хорды (САХ). Его можно найти геометрическим путем, если добавить к корневой хорде с двух сторон концевую, а к концевой хорде с двух сторон корневую, а потом соединить крайние точки вместе. В точке пересечения и будет находится центр САХ.
  2. Значение аэродинамического фокуса крыла составляет 0,25 от значения САХ.
  3. Этот центр необходимо найти как для крыльев, так и для рулей высоты.
  4. Далее определяется нейтральная точка самолёта: она показывает центр тяжести самолета, а также вычисляется вместе с центром давления (центром подъемной силы).
  5. Далее определяется статическая граница. Этот критерий оценивает устойчивость самолёта: чем он выше, тем больше устойчивость. Однако, чем более устойчивее самолёт, тем он более маневренный и менее управляемый. С другой стороны на слишком неустойчивом самолёте тоже нельзя летать. Среднее значение этого параметра — от 5 до 15%
  6. Также рассчитываются коэффициенты оперения. Эти коэффициенты используются для сравнения эффективности аэродинамики руля высоты через соотношение размеров и расстояния до крыла.
  7. Коэффициент вертикального оперения обычно находится между 0,35 и 0,8
  8. Коэффициент горизонтального оперения обычно между 0,02 и 0,05
Оцените статью
Радиокоптер.ру
Добавить комментарий