«Кораблик» для рыбалки своими руками (36 фото): чертежи рыболовной снасти. Как сделать реверсивный «корабль» для ловли рыбы? Другие самодельные «кораблики»

Кораблик для прикормки рыбы с навигатором

С помощью GPS опции во время рыбалки заданными координатами программируется точкакормления, куда и попадает катер. Занесенные координаты будут храниться в памяти, пока их не изменят на следующей рыбалке.

Сделать своими руками прикормочный кораблик с радиоуправлением при наличии определенного опыта и знаний совсем несложно. Он получится не только значительно дешевле готовых моделей, но и качественнее китайских устройств, которые предлагают в магазинах.

Кораблик для прикормки своими руками – чертеж, этапы сборки

Для изготовления катеров для прикормки понадобится потратить немало средств, размер которых будет зависеть от оснащения устройства. Кроме того, что кораблик требует хороший источник энергии, его дополнительно можно оборудовать навигатором, подсветкой и эхолотом.

Чтобы сделать карповый кораблик своими руками, понадобится:

  • два двигателя (редуктора и хода), которые можно взять от старого кассетного магнитофона;
  • эпоксидная смола;
  • армированная стеклоткань;
  • редуктор для детского автомобиля (коэффициент редукции около 1:75);
  • нержавеющая проволока для антенны;
  • крепежные рейки для двигателей;
  • корпус от пульта управления для ПУ корабликом;
  • четырехлопастной гребной винт в 500 мм из нержавеющей стали;
  • вал винта в 2,5 мм из нержавейки;
  • два барабана для сброса прикормки и грузила.

Купить все детали можно в магазинах или интернете. У двигателя и аккумулятора рабочее напряжение должно быть одинаковым.

Этапы сборки радиоуправляемого катера:

  1. Сборка корабликовНа плотной бумаге выполняется чертеж будущего кораблика.
  2. Эскиз разрезается по линиям среза и сгибается по линиям сгиба. Форма будущему кораблику задана.
  3. Плотная бумага склеивается, и от бортов отрезаются лишние края.
  4. Для придания твердости внутренняя часть бумажной формы заполняется глиной, парафином или пластилином.
  5. Корпус переворачивается кверху дном и вырезается необходимого размера стеклоткань.
  6. Ткань накладывается на корпус, после чего начиная с днища, на нее наносится эпоксидная смола. Обмазывается вся ткань до бортов.
  7. После того как смола высохнет (через 3–4 часа), необходимо посмотреть толщину корпуса. Если он тонкий, то нужно будет нанести еще один слой стеклоткани и обмазать ее эпоксидкой. Как только смола хорошо просохнет, с корпуса убираются изъяны.
  8. На корме устанавливаются деревянные рейки, к которым крепятся двигатели, электроника и антенна. Двигатель с дном катера должен образовывать угол примерно в 10 градусов.
  9. В соответствии с эскизом лодки располагаются и монтируются барабаны.
  10. Кожух двигателя наполовину заливается литолом, после чего в него устанавливается вал винта.
  11. На вал устанавливается гребной винт.
  12. Для приемника и передатчика устройства составляется электрическая схема, на основе которой паяется плата, обеспечивающая в будущем связь между передатчиком и приемником.

Как самому сделать кораблик для прикормкинего можно установить светодиоды. Они упростят управление в темное время суток и значительно увеличат улов.

Важным моментов в процессе изготовления устройства является просчет его водоизмещения. Зависит оно от следующих показателей:

  • радиус действия катера;
  • предполагаемый объем завозимой прикормки;
  • дополнительное оборудование, которым будет оснащен кораблик.

Изменяться водоизмещение может от 2,5 до 12 литров.

Критерии выбора

При покупке прикормочного катера в магазине рекомендуется обратить внимание на следующие параметры:

  1. Виды рыболовных корабликовРадиус действия должен быть от 60 до 120 метров.
  2. Вместимость отсека для прикормки выбирается в зависимости от того, сколько ее необходимо будет загружать во время рыбалки.
  3. Корпус с плоским дном лучше всего. Он не погружается в воду и способен преодолевать различные препятствия.
  4. Форму лучше выбирать продолговатую. По такой форме маневры катера в виде отдаления, приближения и разворота будут видны издалека.

При выборе прикормочного катера нужно обратить внимание на его управление. В некоторых моделях управление бывает таким, что им очень неудобно пользоваться.

Оборудование эхолотом

Во время рыбалки нелишним будет видеть рельеф дна и скопление рыб. С этим поможет беспроводной эхолот, глубины работы которого должны быть от 0,6 до 30 метров. От эхолота сигнал может передаваться на дополнительный экран или на пульт управления.

Особенности и разновидности катеров для завоза прикормки

Прикормочный карповый кораблик во время рыбалки могут стать незаменимым помощником. С его помощью рыба станет более легкой добычей. Принцип работы радиоуправляемого устройства следующий:

  1. Загрузка прикормки на кораблик.
  2. Лодка ведется до нужного места с помощью пульта управления.
  3. В нужной точке приманка сбрасывается.
  4. Катер возвращается в исходное место.

Преимущества использования таких устройств во время рыбалки очевидны. Среди самых основных можно выделить:

  • высокий радиус контроля и хорошая проходимость;
  • лодка на борт может взять груз весом от полутора до пяти килограмм;
  • работать устройство может до двух часов, обследуя при этом все участки водоема;
  • при наличии эхолота можно искать рыбу и видеть, что происходит на участке.

Использовать карповые прикормочные катера можно во время рыбалки на водоемах, где нельзя использовать лодку и при наличии большого количества непроходимых мест.

Выделяют три вида устройств для прикормки рыбы:

  • триманан;
  • катамаран;
  • плоское дно.

Первый и второй катер имеют большую грузоподъемность, а кораблик с плоским дном отлично преодолевает заросли и быстро доставляет прикорм в нужное место.

Подготовка

«Кораблик», как и многие другие аксессуары для рыбной ловли, не составляет труда соорудить своими руками. Перед началом изготовления такого полезного и эффективного предмета, обязательно нужно уделить время подготовительным процедурам.

Чтобы сделать качественный ловчий комплект, домашнему мастеру, увлекающемуся рыбалкой, понадобится подготовить древесину.

Лучше всего подойдут ольховые или липовые доски. Их оптимальная толщина будет составлять 12 мм, а ширина – не более 20 мм.

Именно древесный материал и будет выступать в качестве основы рабочего тела конструкции. Чтоб соединить все крепежные элементы и шнур, надо приобрести специальную металлическую шпильку. Ее диаметр должен составлять около 6 мм. Также пригодятся и дополнительные мелкие запчасти: шайбы и гайки, резьба и диаметр которых соответствует шагу резьбы и диаметру шпильки из металла.

Для эффективной отгрузки основного компонента снасти, а именно ее килевой половины, задействуют специальные грузы. Это могут быть свинцовые пластинки, которые прикрепляют к заготовкам с помощью саморезов.

Чтобы обработать верхние части изделия из древесных заготовок, надо закупиться средствами, способными эффективно противостоять процессу водопоглощения. Наиболее известный и действенный компонент – простая олифа. Она может послужить в качестве основы для дальнейшей покраски «кораблика» масляными красками.

На подготовительном этапе настоятельно рекомендуется составить подробные чертежи и схемы будущей самоделки. На плане подобной снасти для завоза прикормки следует указать все размеры главных узлов. Также мастеру понадобится приобрести специальный электрический механизм, который, вкупе с лопастью, будет играть роль двигателя «кораблика».

Из-за наличия указанного компонента стоимость самоделки заметно возрастает.

Подготавливаясь к изготовлению снасти, очень важно запастись соответствующим инструментарием.

  1. Понадобится электрический лобзик, с помощью которого удобно вырезать деревянные детали по шаблонам.
  2. Небольшая отрезная машинка пригодится для округления определенных форм и шлифовки деревянных комплектующих самодельной конструкции. Также этот инструмент позволит раскроить и торцевать шпильки из металла.
  3. Чтобы высверлить отверстия и закрутить саморезы при фиксировании грузиков, потребуется хороший шуруповерт.
  4. Специальные сверла для работы по металлу подбирают в соответствии с задействованным диаметром металлической шпильки.
  5. Пригодятся и рожковые ключи, чтобы зажимать гайки. Их, как и крепежный крюк, требуется выбирать, исходя из размера используемой гайки.
  6. Не обойтись при изготовлении «кораблика» без рулетки и чертежных инструментов. Они пригодятся, чтобы делать разметку материала основания.

Имея все необходимые запчасти, комплектующие, крепежи и инструменты, можно приступать к самостоятельному изготовлению рыболовного «кораблика».

Принцип работы

Многих рыболовов, особенно если они являются новичками в этом деле, интересует, как именно работают так называемые «кораблики». Принцип работы этих приспособлений прост.

  1. Поскольку этот предмет обладает несимметричным устройством, он может легко отходить от бортовых поверхностей лодки.
  2. К нижней половине «кораблика» прикрепляют специальный грузик, за счет которого приспособление может балансировать и находиться в правильном прямом положении.
  3. Снасть прикрепляют к основной леске на небольшом расстоянии от лодки. Делается это таким образом, чтобы леска могла натягиваться, а «кораблик» при этом слегка уходил в сторонку.
  4. По ходу процесса проводки рассматриваемого приспособления постепенно происходит вымывание прикорма. За счет этого рыба начинает подплывать на более близкие расстояния к нужной зоне вылова.

Простой

Существует простой способ создания «кораблика». К нему прибегают многие рыбаки, поскольку он наиболее легкий и доступный в реализации. Смастерить «кораблик» можно по подобию небольшого катамарана. Рассмотрим поэтапно, как делать такой рыбацкий аксессуар.

  1. Сначала древесные заготовки потребуется разметить по трапециевидным шаблонам. Чтобы сопоставить габариты суденышка средней мощности, можно отталкиваться от размеров крупной банки – 350х120 мм, а меньшей – 300х90 мм. Чем более острыми будут углы деталей, тем быстрее конструкция будет набирать скорость, но при этом ее управляемость заметно снизится.
  2. Завершив раскрой заготовок посредством лобзика, острые углы надо будет сгладить, чтобы получились плавные формы. Боковые основания вместе с торцами хорошенько отшлифовывают. Благодаря таким манипуляциям катамаран получится более обтекаемым.
  3. Полноценно отшлифованные и обработанные компоненты конструкции надо разметить под установку поперечных крепежей. Их длина может быть разной, но чаще составляет от 13 до 18 см. Также высверливают необходимые отверстия.
  4. В малой банке должно быть отверстие для крепежного крючка в центре внешней половины. В этом виде деревяшки обрабатывают специальными пропитывающими смесями. Когда пропитки высохнут, можно приниматься за окраску основания в два разных цвета.
  5. Металлические шпильки режут по конкретным размерам, соответствующим ширине суденышка, а потом занимаются торцеванием их окончаний, чтобы можно было сделать свинчивание заготовок.
  6. Покрашенные деревянные запчасти скрепляют по высверленным дыркам посредством затягивания шпилек. На шпильки обязательно устанавливают прокладные шайбы, чтоб не повредить и не помять дерево.
  7. В крепежное отверстие устанавливают крюк, который делают из шпильки и пары зажимных гаек. Чтобы катамаран получился более устойчивым, и повысилась его погружная масса, киль более крупной банки дополняют пластинкой из свинца.
  8. Свинцовую пластину необходимо разрезать в соответствии с формой деревянного элемента, а потом установить, прижимая к поверхности основания саморезами. Чтобы добиться стабильного хода, иногда делают отгрузку и маленькой банки.
Смотрите про коптеры:  Ремонт бесколлекторного двигателя квадрокоптера, магниты - Все о квадрокоптерах | PROFPV.RU

Завершив процесс отгрузки самоделки, можно пускать ее в дело. Теперь останется только протестировать сделанную снасть, а также отрегулировать ее крепежные компоненты, если в этом появится необходимость.

Радиоуправление для прикормочного карпового кораблика с сохранением точек прикормки sc-a1. своими руками.

Меня зовут Дмитрий Дударев. Я занимаюсь разработкой электроники и очень люблю создавать различные портативные девайсы. Еще я люблю музыку.

Давным-давно – в апреле или около того, когда весь мир сотрясался от ударов страшного карантина, я решил научиться играть на гитаре. Я взял у друга акустическую гитару и стал осваивать инструмент по урокам из ютуба и табулатурам. Было тяжело. То ли я неправильно что-то делал, то ли плохо старался, то ли в обществе моих предков мелкая моторика вредила размножению. Короче, ничего кроме звуков дребезжащих струн у меня не выходило. Мое негодование усиливала постоянная расстройка струн. Да и окружающим тысячный раз слушать мою кривую Nothing else matters удовольствия не доставляло.

Но в этих муках про главное правило электронщика я не забыл. Если что-то существует, значит туда можно вставить микроконтроллер. Или, хотя бы, сделать портативную электронную модификацию.

Электронная гитара? Хм, интересная идея, подумал я. Но еще лучше, если на этой гитаре я сам смогу научиться играть. В тот же день акустическая гитара отправилась на свалку обратно к другу, а я стал придумывать идею.

Поскольку я у мамы инженер, то первым делом я составил список требований к девайсу.

Что я хочу от гитары?

1)  Я хочу что-то максимально похожее на гитару, т.е. шесть струн и 12 ладов на грифе.

2)  Хочу компактность и портативность. Чтобы можно было брать девайс с собой куда угодно, не заказывая газель для транспортировки.

3)  Устройство должно без плясок с бубном подключаться к чему угодно, от iOS до Windows. Окей-окей, ладно, будем реалистичными – ко всем популярным осям.

4)  Работа от аккумулятора.

5)  Подключение должно производиться без проводов (но раз уж там будет USB разъем для зарядки, то и по проводу пусть тоже подключается)

6)  Ключевой момент – на гитаре должно быть просто учиться играть, без необходимости в долгих тренировках по адаптации кистевых связок. Как это реализовать? Сразу пришла идея оснастить струны и лады светодиодами. Типа, загрузил табулатуры в гитару, а она уже сама показывает, куда ставить пальцы. Т.е. нет такого, что смотришь на экран, потом на гитару, снова на экран, снова на гитару. Вот этого вот всего не надо. Смотришь только на гитару. И там же играешь. Все. Это прям мое.

7)  Хотелось бы поддержки разных техник игры на гитаре: hummer on, pull off, slide, vibrato.

8) Без тормозов. По-научному – чтобы задержка midi-команд не превышала 10мс.

9)  Все должно собираться из говна и палок легко доступных материалов без сложных техпроцессов и дорогой электроники.

В итоге должен получиться компактный инструмент, на котором можно играть, как на гитаре, лишенный аналоговых недостатков и оснащенный наглядной системой обучения. Звучит реализуемо.

Разумеется, для мобильных платформ потребуется написать приложение, в котором можно будет выбрать табулатуру для обучения светодиодами, выбрать инструмент (акустика, классика, электрогитара с различными пресетами фильтров, укулеле и т.д.), и воспроизводить звуки.

Существующие аналоги

А надо ли изобретать велосипед? Ведь на всякую гениальную идею почти наверняка найдется азиат, который уже давно все реализовал в «железе», причем сделал это лучше, чем ты изначально собирался. Иду гуглить.

Оказывается, первая цифровая гитара была создана еще в 1981 году, но в народ сильно не пошла из-за хилой функциональности.

Варианты посовременнее, конечно, тоже нашлись.

Вот, например, с айпадом вместо струн или еще одна в форме моллюска:

Однако такого, чтобы выполнялись все мои хотелки – в первую очередь компактность и режим обучения «жми на лампочки» – такого нет. Кроме того, такие midi-гитары нацелены все же на более профессиональную аудиторию. И еще они дорогие.

Значит, приступаем!

Первый прототип

Чтобы проверить жизнеспособность концепции, нужно сначала определиться с элементной базой.

Контроллер берем STM32F042. В нем есть все, что нужно, при стоимости меньше бакса. Кроме беспроводного подключения, но с этим позже разберемся.

Далее. Струны на деке. Для первого концепта решил напечатать пластиковые язычки, закрепить их на потенциометрах с пружинками и измерять углы отклонения.

Так выглядит 3D-модель:

А так живьем:

Тактильное ощущение приятное. Должно сработать.

Для ладов на грифе я заказал на Али вот такие тензорезистивные датчики.

В отличие от разнообразных кнопок, они не щелкают. Плюс есть возможность определять усилие нажатия, а значит, можно реализовать сложные техники вроде slide или vibrato.

Плюс нужен АЦП, чтобы считывать инфу с датчиков и передавать на контроллер.

Пока ждал датчики из Китая, развел плату:

Прежде чем заказывать печать платы, решил дождаться тензорезисторов. И, как оказалось, не зря. Из 80-ти датчиков рабочими оказались только несколько, и то с разными параметрами.

Выглядит, мягко говоря, не так, как заявлено. И чего я ожидал, покупая электронику на Али?..

И тут меня осенило.

Можно ведь применить другой метод детектирования — измерение емкости, как в датчиках прикосновения. Это гораздо дешевле и доступнее. А если правильно спроектировать механику, то можно и усилие определять.

Что ж. Удаляю все, что было сделано

Второй прототип

Итак, тензорезистивные датчики в топку. В качестве сенсорных элементов в этот раз взял небольшие медные цилиндрики, напиленные из проволоки. Для измерения емкости удалось найти дешевый 12-канальный измеритель емкости общего назначения. Он измеряет емкость в масштабах единиц пикофарад, чего должно быть достаточно для схемы измерения усилия, которую я планирую реализовать в следующих модификациях.

Дополнительно на всякий случай повесил на каждый элемент грифа по посадочному месту для кнопки или чего-то подобного. И сделал соответствующие вырезы в плате. Это чтобы можно было не только прикоснуться к цилиндрику, но и прожать его внутрь. Можно будет поэкспериментировать с разными техниками игры.

Решив вопрос подключения множества микросхем измерителя емкости к контроллеру, приступаю к разводке платы.

На этот раз плату удалось заказать и даже дождаться ее изготовления.

После того, как припаял все комплектующие к плате, понял, что конструкция с пластиковыми струнами получается слишком сложной. Поэтому решил пока что повесить на деку такие же сенсорные цилиндрики, но подлиннее.

Смотрите про коптеры:  Дрон своими руками: Урок 1. Терминология.

Два проводочка в нижней части – это я подключил накладку с цилиндриками к уже изготовленной плате. Это временное решение.

Железяка готова. Следующая задача – заставить ее играть.

Софт

Программная часть реализована так:

1. Скачиваем виртуальный синтезатор, который может работать с MIDI устройством и издавать гитарные звуки.

2. Пишем прошивку для контроллера, которая будет опрашивать сенсоры и передавать данные по USB на комп.

3. На стороне компа пишем программу, которая будет получать эти данные, генерировать из них MIDI-пакеты и отправлять их на виртуальный синтезатор из пункта 1.

Теперь каждый пункт подробнее.

Виртуальных синтезаторов под винду с поддержкой MIDI оказалось довольно много. Я попробовал Ableton live, RealGuitar, FL studio, Kontakt. Остановился на RealGuitar из-за простоты и заточенности именно под гитару. Он даже умеет имитировать несовершенства человеческой игры – скольжение пальцев по струнам, рандомизированные параметры извлечения нот.

Чтобы подключить свое приложение к виртуальному синтезатору я сэмулировал виртуальный порт midi, который подключен ко входу синтезатора RealGuitar через эмулятор midi-кабеля. Такая вот многоуровневая эмуляция.

*Мем с ДиКаприо с прищуренными глазами*

В интерфейсе программы я сделал графическое отображение уровня измеряемой емкости для каждого сенсора. Так будет проще подстраивать звучание. Также на будущее добавил элементы управления светодиодами, вибромотором (пока не знаю зачем, но он тоже будет в гитаре), визуализации работы акселерометра и уровня заряда аккумулятора.

Для того чтобы удары по струнам гитары вызывали проигрывание правильных нот, нужно замапить все 72 сенсора на грифе на соответствующую ноту.

Оказалось, что из 72 элементов на 12-ти ладах всего 37 уникальных нот. Они расположены по определенной структуре, так что удалось вместо построения большой таблицы вывести простое уравнение, которое по номеру сенсора выдает номер соответствующей ноты.

Проверяем работу

Похоже, все готово для первого теста. Пилить прутки и паять все 12 ладов мне было лень, поэтому ограничился 8-ю. Момент истины:

IT’S ALIVE! Жизнеспособность концепта подтверждена. Счастью не было предела! Но нельзя расслабляться.

Следующий этап – добавление светодиодов, акселерометра, вибромотора, аккумулятора, беспроводной связи, корпуса и возможности работы без драйверов или программ эмуляции midi на всех популярных платформах.

Светодиоды

По плану гитара должна подсказывать пользователю, куда ставить пальцы, зажигая в этом месте светодиод. Всего нужно 84 светодиода. Тут все просто. Я взял 14 восьмибитных сдвиговых регистров и соединил в daisy chain. STM-ка передает данные в первый регистр, первый – во второй, второй – в третий и т.д. И все это через DMA, без участия ядра контроллера.

Акселерометр

Самый простой акселерометр LIS3D позволит гитаре определить угол своего наклона. В будущем буду это использовать для наложения звуковых фильтров во время игры в зависимости от положения гитары.

Беспроводное соединение

Для беспроводной передачи данных решил поставить ESP32. Оно поддерживает различные протоколы Bluetooth и WI-FI, будет с чем поэкспериментировать (на тот момент я еще не знал, что в моем случае существует только один правильный способ подключения).

Корпус

Одно из ключевых требований к гитаре – портативность. Поэтому она должна быть складной, а значит, электронику деки и грифа нужно разнести на две платы и соединять их шлейфом. Питание будет подаваться при раскрытии корпуса, когда магнит на грифе приблизится к датчику Холла на деке.

Доработка прототипа

Что ж, осталось облачить девайс в приличную одежку.

Я много экспериментировал с различными конструкциями тактильных элементов грифа и рассеивателями для светодиодов. Хотелось, чтобы равномерно светилась вся поверхность элемента, но при этом сохранялась возможность детектирования прикосновения и нажатия на кнопки.

Вот некоторая часть этих экспериментов:

Еще я обратился к другу, который профессионально занимается промышленным дизайном. Мы придумали конструкцию узла сгибания гитары, после чего он спроектировал и напечатал прототип корпуса.

Развожу финальный вариант плат и собираем гитару:

Выглядит почти круто. Но девайс все еще подключается к компу через цепочку эмуляторов, эмулирующих другие эмуляторы.

Превращаем гитару в MIDI-устройство

В новой версии в первую очередь я хотел, чтобы при подключении по USB, гитара определялась как MIDI устройство без всяких лишних программ.

Оказалось, сделать это не так сложно. Все спецификации есть на официальном сайте usb.org. Но все алгоритмы, которые выполнялись на стороне python-приложения, пришлось переписывать на C в контроллер.

Я был удивлен, что оно сразу заработало на всех устройствах. Windows 10, MacOS, Debian 9, Android (через USB переходник). Достаточно просто воткнуть провод и в системе появляется MIDI-устройство с названием «Sensy» и распознается всеми синтезаторами. С айфоном пока протестировать не удалось т.к. нет переходника. Но должно работать так же.

Беспроводной интерфейс

Осталось избавиться от проводов. Правильное решение пришло не сразу, потому что я поленился как следует погуглить. Но в итоге я использовал протокол BLE MIDI, который поддерживается всеми новыми операционками и работает без всяких драйверов прямо как по USB MIDI. Правда, есть вероятность, что на более старых операционках решение не заработает в силу отсутствия поддержки BLE MIDI. Но все тесты с доступными мне девайсами прошли успешно.

Переписанный функционал приложения – т.е. трансляция данных сенсоров в MIDI-данные – занял точнехонько всю память контроллера. Свободными осталось всего 168 байт. Очевидно, кремниевые боги мне благоволили, значит иду в правильном направлении.

Уверен, можно оптимизировать, но это отложу для следующей версии. Хотя, возможно, проще не тратить время и просто взять контроллер потолще. Разница по деньгам – 5 центов. Посмотрим. Все равно нужно будет место для новых фич – обрабатывать техники игры, например. В первую очередь, хочу реализовать slide. Это когда начинаешь играть ноту с определенным зажатым ладом и проскальзываешь рукой по грифу, перескакивая с лада на лад.

Теперь можно проверить работу по беспроводу:

При включении всех светодиодов, гитару можно использовать, если вы заблудились в темной пещере.

Недостатки прототипа

На текущий момент у конструкции есть следующие минусы:

1) На сенсорах нигде не измеряется усилие нажатия. Это влечет за собой три проблемы:

• Постоянно происходят случайные задевания соседних струн как на деке, так и на грифе. Это делает игру очень сложной.

• Все играемые ноты извлекаются с одинаковой громкостью. Большинство подопытных этого не замечают, но хотелось бы более приближенной к настоящей гитаре игры

• Невозможность использовать техники hammer on, pull off и vibrato

2) Светодиоды одноцветные. Это ограничивает наглядность при игре по табулатурам. Хочется иметь возможность разными цветами указывать на различные приемы игры.

3) Форма корпуса не подходит для левшей. С точки зрения софта – я уже реализовал инверсию струн по акселерометру. Но механический лепесток, необходимый для удержания гитары рукой во время игры, поворачивается только в сторону, удобную правшам.

4) Отсутствие упора для ноги. Сейчас при игре сидя нижняя струна почти касается ноги, а это неудобно.

5)  Сустав сгибания гитары требует осмысления и доработки. Возможно, он недостаточно надежен и стабилен.

Время переходить к разработке следующей версии.

Переезжаю на контроллер серии STM32F07. На нем уже 128КБ флэша – этого хватит на любой функционал. И даже на пасхалки останется.

Использовать ESP32 в финальной версии гитары было бы слишком жирно, поэтому я пошел искать что-то более православное. Выбор пал на NRF52 по критериям доступности, наличию документации и адекватности сайта.

Конечно, будут реализованы и три главных нововведения:

— светодиоды теперь RGB,

— на каждом сенсоре грифа будет измерение усилия (тактовые кнопки больше не нужны),

— струны на деке станут подвижными.

На данный момент плата деки выглядит так (футпринт ESP на всякий случай оставил):

Уже есть полная уверенность в том, что весь задуманный функционал будет реализован, поэтому было принято решение о дальнейшем развитии. Будем пилить стартап и выкладываться на Kickstarter 🙂

Проект называется Sensy и сейчас находится в активной разработке. Мы находимся в Питере, сейчас команда состоит из двух человек: я занимаюсь технической частью, мой партнер – маркетингом, финансами, юридическими вопросами.

Смотрите про коптеры:  Что такое бесколлекторный двигатель?

Скоро нам понадобится наполнять библиотеки табулатур и сэмплов различных инструментов. Если среди читателей есть желающие в этом помочь – пожалуйста, пишите мне в любое время.

Кому интересно следить за новостями проекта – оставляйте почту в форме на сайте и подписывайтесь на соцсети.

Очень надеюсь на обратную связь с комментариями и предложениями!

Спасибо за внимание!

Забавный эпизод из процесса разработки

Сижу отлаживаю NRF52, пытаюсь вывести данные через UART. Ничего не выходит. Проверял код, пайку, даже перепаивал чип, ничего не помогает.

И тут случайно нестандартным способом перезагружаю плату – в терминал приходит буква «N» в ascii. Это соответствует числу 0x4E, которое я не отправлял. Перезагружаю еще раз – приходит буква «O». Странно. Может быть проблема с кварцевым резонатором и сбился baud rate? Меняю частоту в терминале, перезагружаю плату – опять приходит «N». С каждой новой перезагрузкой приходит по новой букве, которые в итоге составляют повторяющуюся по кругу фразу «NON GENUINE DEVICE FOUND».

Что эта NRF-ка себе позволяет? Прошивку я обнулял. Как она после перезагрузки вообще помнит, что отправлялось в предыдущий раз? Это было похоже на какой-то спиритический сеанс. Может, я и есть тот самый NON GENUINE DEVICE?

Залез в гугл, выяснил, что производители ftdi микросхем, которые стоят в USB-UART донглах, придумали способ бороться с китайскими подделками. Виндовый драйвер проверяет оригинальность микросхемы и на лету подменяет приходящие данные на эту фразу в случае, если она поддельная. Очевидно, мой донгл оказался подделкой и переход на другой решил эту проблему.

Снова спасибо китайцам.

Реверсивный

Многие рыболовы заметили, что при применении простого «водяного змея», возникают определенные неудобства. Они связаны с вываживанием пойманной рыбы посредством снасти. Чтобы подтянуть трофей, требовалось прикладывать определенные усилия и постоянно держать под контролем степень натянутости шнура с одномоментной подмоткой. Из-за этого рыбная ловля в любом случае станет гораздо менее комфортной.

Особенно сильно такие неудобства заметны, когда рыбалка проводится на дальних дистанциях, а также в условиях рек с умеренным течением.

Чтобы избавиться от перечисленных трудностей, опытные рыбаки разработали конструкцию реверсивного «кораблика». Подобные снасти, при определенных манипуляциях с их управлением, способны изменять траекторию передвижения на противоположную. Так, делая подводку шнура к берегу, влияя на направленность движения самоделки, с учетом все того же водного течения, не возникают большие неудобства.

Возможности реверса обеспечивает дополнительное размещение скобы из металла со специальным колечком. Эту деталь прикрепляют к внешней части маленькой банки плавательного приспособления. Если рассматривать отличия реверсивных изделий от простых моделей, то можно заметить, что во втором случае шнур привязывают именно к подвижному, а не к стационарному кольцу.

В моменты, когда осуществляется запуск мини- «кораблика» на определенную дистанцию, под силой натяга колечко занимает конкретное положение. Благодаря этому предмет отводится от берега. Если же, после поимки подводной добычи или проверки приманки, шнурку дают небольшую слабину, а потом делают резкую натяжку, то случается произвольная перебежка колечка в совершенно противоположную половину скобы.

Как только место расположения крепежа поменяется, вместе с этим меняется и сама траектория передвижения. В итоге судно возвращается к противоположному направлению. Скоба – это один из самых простых и даже примитивных способов обеспечения реверсивного перемещения снасти. Опытные рыболовы разработали и более сложные механизмы, позволяющие изменять ход. Такие разработки основываются в своей работе на силе смещения крепежных точек.

Подобные самоделки требуют более богатого опыта, современного инструмента и подробных проектов/чертежей.

Разобравшись в работе реверсивного кораблика, стоит рассмотреть подробно основные этапы его самостоятельного изготовления.

  1. Чтобы собрать такую конструкцию, понадобится только очень хорошо высушенная древесина, имеющая достаточную подъемную способность. Конечно, ей придается соответствующая форма.
  2. Чтобы заготовка не всплывала из воды, к нижней торцевой части доски прицепляют редан.
  3. Древесную основу обрабатывают олифой, а потом красят масляными красками. При этом подводную часть изделия можно окрасить голубым цветом, а надводную – белым.
  4. В середине доски высверливают дырку с диаметром примерно в 8 мм, чтобы закрепить свинцовый грузик.
  5. В верхнем торце доски, на участке между пружинками, прикрепляют полоску из пробки. Здесь будут храниться мушки.
  6. Пружину можно соорудить из полосок нержавеющей стали толщиной 0,8 мм, шириной – 10 мм и длиной – 320 мм.
  7. Поплавок можно изготовить самому из обычного пенопласта. Его вместе с переключающим компонентом и пружинками потребуется прикрепить к древесному основанию.
  8. Надо взять полоску из нержавейки и из нее соорудить переключатель. Полоска должна иметь толщину в 1 мм.
  9. Скоба-предохранитель может быть сделана из медной проволоки толщиной 2 мм.

Рекомендации

          Если вы решили своими руками соорудить качественный и действенный «кораблик» для рыбной ловли, то имеет смысл взять на вооружение ряд полезных советов и рекомендаций, которые помогут в проведении подобных работ.

          1. Многие рыболовы (особенно, новички) совсем забывают о том, что «кораблик» подводить слишком близко к берегу не следует. Такую снасть нельзя перемещать в места, где слишком мелко.
          2. Если не обращать внимание на состояние буксировочной лески, и никак ее не контролировать, то она начнет хлопать по воде. Это только спугнет рыб.
          3. Несмотря на то, что слишком близко к берегу «кораблик» подводить нельзя, это вовсе не говорит о том, что его нужно отправлять на очень далекие расстояния. Чересчур далеко от береговой зоны такие снасти находиться так же не должны.
          4. На правильно сделанный «кораблик» рыбак может легко поймать такую рыбу: жерех, язь, чехонь, голавль и пр. Многие пользователи применяют такой аксессуар как карповый прикормочный предмет, и добиваются хороших результатов.
          5. Если хочется сделать «кораблик» более высокотехнологичным и мощным, то целесообразно соорудить радиоуправляемый рыбацкий аксессуар. В изготовлении он окажется гораздо более сложным, да и денег на него уйдет больше, зато его эффективность может приятно удивить рыбака.
          6. Делая реверсивный «кораблик» по типу санки, пружинки для его конструкции требуется изгибать таким образом, чтобы переключающий компонент возвышался непосредственно над ватерлинией, на показатель высоты подводной половины установленного поплавка. Об этой особенности установки не следует забывать.
          7. Пользуясь самодельными снастями, типа «кораблик», рекомендуется насаживать на крючок разных насекомых (в качестве наживки). Но не запрещается пользоваться и другими типами приманок, в том числе и искусственными, продающимися в магазине или сделанными своими руками.
          8. Подбирая масляную краску для обработки деревянных запчастей «кораблика», не следует выбирать излишне яркие и кричащие оттенки. Если не следовать этому простому правилу, то подводные жители будут сильно пугаться снасти, а не приближаться к ней с интересом.
          9. Отправляясь на рыбалку с применением рассмотренного рыбацкого аксессуара, настоятельно не рекомендуется одеваться в слишком пеструю и цветную одежду. Многие люди пренебрегают этим советом, но лучше замаскировать не только снасти, но и самого себя, чтобы лишний раз не отпугивать добычу.
          10. Не рекомендуется делать «кораблик» даже самого простого типа, не составив предварительные подробные чертежи. Только имея под рукой схему будущей самоделки, можно соорудить действительно качественный и перспективный аксессуар, который сможет принести хороший улов. Если самостоятельно составить чертеж не получается, можно воспользоваться готовыми схемами.
          11. Доски, из которых запланировано сделать снасть, обязательно должны быть абсолютно сухими. С влажной древесиной работать не следует.
          12. Самостоятельно изготавливая «кораблик» для рыбалки, очень важно действовать постепенно, поэтапно. Лишняя торопливость только навредит качеству самодельной конструкции. Поэтому рыбаку следует запастись терпением, и только после этого приниматься за работу.
          13. Делая «кораблик», обязательно нужно следить за тем, чтобы он демонстрировал хорошую плавучесть. Если это условие не будет соблюдено, то и от изделия толку не будет.

          Как сделать риверсивный кораблик для рыбалки, смотрите в видео.

          Способы изготовления

          Существует несколько разных способов изготовления рыболовного «кораблика». Каждый из них предусматривает свой план действий. Рассмотрим подробно наиболее популярные методы, в соответствии с которыми можно сделать качественную и эффективную снасть для ловли рыбы.

          Добавить комментарий

          Ваш адрес email не будет опубликован. Обязательные поля помечены *

          Adblock
          detector