Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE. Квадрокоптеры

Собираем fpv гоночный квадрокоптер на раме – ldarc kingkong kk 5gt

Здравствуйте, уважаемые читатели! В этой статье хочу поделиться материалом по сборке гоночного FPV коптера на базе рамы, рассчитанной на установку пятидюймовых пропеллеров – LDARC Kingkong KK 5GT. Статья выполнена в стиле пошаговой инструкции по сборке, может помочь начинающим пилотам, которые уже собирают или планируют собирать квадрик. Неравнодушных к теме FPV полётов, прошу под кат.

Поставляется комплект рамы в картонной упаковке. Внутри все элементы рамы запакованы в индивидуальные пакеты и имеют наклейки с маркировкой.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

В комплекте есть все, что потребуется для сборки, даже стяжки и пропы 5045, а вот стойки для крепления регуля и полётника положить забыли.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Качество карбона отменное, структура многослойная, углеткани явно не жалели.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Распил заготовок ровный, но на некоторых деталях нашёл небольшие заусенцы по краю реза.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Толщина лучей – 5 мм.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Ширина лучей всего – 11 мм, отдельные регуляторы на каждый мотор, конечно, поставить можно, но рамка изначально рассчитана на установку регулятора 4 в 1.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Остальные карбоновые детали толщиной – 2 мм. Кроме планки для крепления антенны видеопередатчика, она толщиной – 1.5 мм.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Начинаем собирать раму. Лучи рамы сменные, при сильном краше можно купить новый комплект из двух лучей.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Центральная часть рамы имеет слоёную конструкцию, которая скрепляется закладными гайками и болтами М3*6. Конструкция весьма мудрёная, непонятно, зачем было использовать закладные куда проще стянуть обычной парой – болт плюс гайка.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Получилось основание для монтажа моторов и электроники. Диагональ по центрам моторов – 213 мм.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Форма основания – симметричный крест.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Монтируем пластиковые стойки, на которые будем закреплять регулятор и полётный контроллер (стойки в комплект рамы не входят). Я использую вот такой наборчик пластикового крепежа –

Suleve M3NH1 M3 Nylon Screw

.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Длинными анодированными болтами M3*14 к основанию рамы прикручиваем металлические боковины. После установки боковин рама приобретает отличную жёсткость.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Ставим на место верхнюю деку.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Ставим гнездо под антенный вывод. А вот плату с пищалкой и светодиодами ставить не рекомендую. Жить такая пищалка будет – до первого жёсткого куста. Пищалки я обычно прячу внутрь рамы, она часто помогает отыскать модель в густой траве, и летать без неё не рекомендую.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Рама готова:

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Вес пустой рамы – 106 г. На мой взгляд, многовато для рамы, у которой практически нет башни и очень тонкие лучи. Но тут основной вес набегает за счёт боковинок из алюминиевого сплава и слоеной конструкции центральной части.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для сборки квадрика, кроме вышеупомянутой рамы, буду использовать: приёмник –

FrSky XSR

для аппаратуры

TARANIS

; курсовую камеру (можно использовать только мини формат) –

Foxeer Monster Mini Pro

; моторы –

DYS SE2205 PRO 2300KV

. Сразу хочу предупредить, рама KK 5GT предназначена для установки только мини-версий курсовых камер, или микро, через самодельную проставку. Ширина проёма под камеру – 22.5 мм.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

В качестве полётного контроллера и регулятора буду использовать комбо –

AuroraRC C2 Flytower OMVT F4

. В набор входят регуляторы 4 в 1 и полётник на процессоре F4, с интегрированным видеопередатчиком.

Описание полётного контроллера

Сразу хочу предупредить, так как на полётный контроллер интегрирован видеопередатчик, подключать его следует только с установленным пигтейлом и подключенной к разъёму SMA антенне. В противном случае возможен выход передатчика из строя. Данный ПК (ПК — полётный контроллер) по сути, один из многочисленных клонов OMNIBUS4SD, на который установили видеопередатчик. Подобных решений на торговых площадках Китая просто огромное количество, и данный контроллер известен как – NTXF4-FC. Вот только наклейку сменили, но надпись на плате затереть забыли.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

На полётном контроллере применена вполне стандартная для таких изделий связка. Процессор STM32F4 и сенсор MPU-6000.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

На плате присутствуют контактные площадки для подключения пищалки и габаритной светодиодной подсветки.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Рядом с антенным разъёмом расположены две кнопки управления видеопередатчиком. Кнопка FR переключает частотную сетку и канал, кнопка POW – мощность.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для индикации установленной частотной сетки, канала и мощности видеопередатчика применены SMD светодиоды, расположенные в трёх группах, POW, CH, FR.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Короткое нажатие кнопки FR переключает каналы, длительное нажатие (2 секунды) переключает частотную сетку. Однократное нажатие на кнопку POW регулирует мощность –25mW, 100mW, 200mW, 400mW, 600mW.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для подключения к ПК и настройкам в программе betaflight на полётном контроллере установлен порт – micro usb.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Контроллер оборудован слотом для карточек памяти формата micro sd. При активации логов в прошивке betaflight, становиться доступным запись полётных параметров на карту памяти. Но обычно данной опцией никто не пользуется.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

ESC – порт для подключения полётного контроллера к регулятору. САМ – порт для подключения курсовой камеры.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

PPS/S – для подключения приёмников по шине SBUS. DSM/T – порт для приёмников spectrum.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Контактные площадки портов периферии. Эти порты могут управлять дополнительным оборудованием на коптере, например, камерой – Runcam Split.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

В качестве чипа OSD на данном полётном контроллере применена микросхема AT7456E.

Ссылка на даташит

.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Распиновка полётного контроллера:

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Приступим к сборке коптера. К лучам рамы прикручиваем все четыре мотора. Я креплю моторы на четыре болта, с использованием фиксатора резьбы.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для подключения к регулятору я использую провода 20 AWG из комплекта моторов. Паяем провода сначала к моторам.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Потом к регулятору. Можно оставлять небольшой запас по длине, чтобы при обломе луча не вырвало провода вместе с монтажной платой из моторов.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

К каким фазам, какой провод подключать значения особого не имеет и влияет только на направление вращения моторов. На этапе настройки можно поменять направление вращения моторов в программе blhelisuite32. Проверяем качество пайки, чтобы в полёте ничего не отвалилось.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Полётник буду устанавливать на силиконовые демпферы –

HGLRC M3 Anti-vibration Washer Rubber Damping

. Демпферы обеспечат виброразвязку гиры от вибраций на раме.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Затягиваем болты, закрепляющие полётник без фанатизма, иначе демпферы не будет работать.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Чтобы не плодить лишних проводов,

пищалку

припаял непосредственно к контактам на полётном контроллере.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для устранения помех на видео по шине 5V запаиваем электролит, мне под руку попался 470µF/16V, его и пришпандорил. Не забываем, потом все заизолировать термоусадкой и лаком пластик 71.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Электролит на 820µ/25V припаиваем на шину аккумулятора. Так как рама компактная, пришлось все делать на выносных проводах.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

К полётнику подключаем все компоненты, включая антенну (без антенны сгорит видеопередатчик) и проверяем на работоспособность. Убедились, что все работает – можно окончательно заканчивать сборку.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Тут выясняется один неприятный момент. Приёмник XSR не влезает в раму, ни под каким предлогом. Пришлось ставить более компактный

Frsky XM

.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для микроприёмника места вполне достаточно как снизу, так и сверху рамы.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Ставим пигтейль с разъёмом SMA, на который будет прикручиваться антенна видеопередатчика.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Устанавливаем курсовую камеру.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Рама рассчитана на использование камеры

RunCam Swift Mini 2

, поэтому верхние крепёжные отверстия немного не совпадают с фоксером. Но она и на двух болтах отлично фиксируется в раме.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Теперь можно установить верхнюю деку рамы, на своё место.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Усы антенн от приёмника XM закреплю на стяжках к лучам рамы.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Стяжками или изолентой фиксируем провода от моторов.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Приклеиваем комплектную мягкую прокладку для аккумулятора.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Прикручиваем

антенну видеопередатчика

к разъёму SMA.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Под регулятор продеваем

стяжку-велкро

для фиксации аккумуляторов.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

В итоге получилось:

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Вес квадрика без акума с пропами «трёшками» – 332 г. Если добавить 4S аккумулятор, то полётный вес будет в районе 490 г

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Верхняя дека имеет угол наклона около 30 градусов, что позволяет без проблем закрепить на ней экшн камеры.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Настройка

Прошивать полётный контроллер необходимо таргетом – OMNIBUS4SD. По умолчанию контроллер был прошит старой прошивкой 3.2.2 OMNIBUS4SD. Я обновил прошивку до стабильной версии 3.5.0.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для работы приёмника по шине SBUS активируем Serial RX на UART6. Для UART3 устанавливаем IRC Tramp – удалённое управление настройками передатчика.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Если нет желания летать в режиме стабилизации, то отключаем акселерометр и устанавливаем максимально возможную частоту работы для процессора полётного контроллера.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для облёта настройки PID регулятора в программе оставил по умолчанию, единственное что добавил немного экспонент на основные каналы управления.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Устанавливаем полётные режимы на ваши любимые переключатели. Естественно, надо настроить ARM (активация коптера).

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

В настройках Betaflight OSD располагаем необходимые нам параметры на экране в соответствии с предпочтениями.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Несколько слов скажу про удалённое управление параметрами видеопередатчика через OSD меню Betaflight. Для входа в меню необходимо дизармить коптер, установить стик газа в положение 50%, стик PITCH вверх (UP), YAW LEFT и мы попадаем в экранное меню Betaflight. Переходим во вкладку FEATURES далее во вкладку UTX TR и оказываемся м меню TRAMP где можем менять частотную сетку, канал и мощность. После изменения настроек необходимо войти в пункт SET и подтвердить изменения YES.

Смотрите про коптеры:  DJI Mavic Mini: самый легкий складной квадрокоптер / Хабр

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.
Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Более наглядно меню управления передатчика продемонстрировано на видео:

Программа для работы с 32-х битными регуляторами

BLHeliSuite 32

, нашла четыре регулятора YGRC_32, версия прошивки 32.4.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Для правильного вращения мне пришлось реверсировать два мотора, но можно этого и не делать, а поменять местами любые два провода от регулятора к мотору. Параметр PWM Frequency я установил в 48 kHz, это даст более «мягкое» управление электромоторами.

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Мои настройки в BLHeliSuite 32:

Квадрокоптер своими руками. Руководство по сборке FPV квадрокоптера. ⋆ Хобби блог FPSTYLE.

Квад с таким сетом летит просто отлично. Облётывал в очень сильный и порывистый ветер, но такое впечатление, что порывов ветра квадрик просто не замечает. Летит как по рельсам.

В итоге. Рама для сборок вполне годная. Из плюсов: сменные лучи; хорошая жёсткость; низкий профиль (необходим для FPV гонок при прохождении ворот); хорошая комплектация (даже пропы положили). Что не понравилось – дороговизна самой рамы, вытекает их хорошего карбона, фрезерованных металлических боковин и ненужных пропов и стяжек в комплекте. Остальные придирки возникли из основного плюса – компактность. Место только под стек из двух этажей, курсовые камеры только формата мини, слишком узкие лучи для размещения отдельных регуляторов. Если не ставить электролиты и подыскать менее высокие стойки, то внутри без проблем можно разместить отдельный видеопередатчик и ещё место для приёмника останется. В целом – для сборок именно гоночных сетапов вполне рекомендую. Для полётов вокруг себя да около, лучше подыскать рамку попроще и попросторнее, чтобы не мучиться с монтажом и подбором комплектухи.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Эволюция систем управления беспилотных летательных аппаратов: от появления до наших дней

Аннотация: в данной статье приведена ТРИЗ-эволюция систем управления беспилотными летательными аппаратами, начиная с первых и заканчивая современными, с их описанием, техническими противоречиями и возможным дальнейшим развитием.

Ключевые слова: система управления, беспилотный летательный аппарат, БПЛА. 

Annotation: In this article we present TRIZ-evolution of control systems of unmanned aerial vehicles, that is starting with the original and ending with the modern, with their description, technical contradictions and possible further development. 

Keywords: control system, unmanned aerial vehicle, UAV. 

В настоящее время беспилотные летательные аппараты (БПЛА) достаточно сильно развиты и имеют широкий круг применений. За век своего существования БПЛА как увеличились в своих размера до десятков метров, так и уменьшились до нескольких миллиметров; их диапазон скорости, грузоподъёмности тоже  существенно расширился.

Однако системы управления БПЛА неизменно развивались и продолжают развиваться. Рассмотрим эволюцию систем управления БПЛА, начиная от систем управления первых беспилотных «воздушных торпед» до систем управления современных беспилотников. Для современных БПЛА ограничимся мини и микро классами аппаратов (вес до 30 кг).

Как всегда бывает, первыми БПЛА разрабатывали военные, и только в XXI веке началось активное развитие БПЛА гражданского назначения. 

1.      Исторически первый БПЛА. 

Исторически первым БПЛА считается «Жук» Кеттеринга (см. рис. 1). Это один из первых успешных проектов беспилотного летательного средства. По заказу армии США в 1917 году изобретатель Чарльз Кеттеринг разработал свою экспериментальную беспилотную «воздушную торпеду», которая стала предшественником крылатых ракет. Целью было создать дешёвый и простой беспилотный самолёт-снаряд для армейского авиационного корпуса.

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 1 – Жук Кеттеринга. 

Аппарат получился достаточно компактный, в отличие от «крылатой бомбы» Сперри, разрабатываемой и испытываемой в тоже время. «Жук» имел цилиндрический корпус из дерева, к которому крепилась бипланная V-образная коробка. 

Беспилотное средство было оснащено дешёвым четырёхцилиндровым двигателем и инерциальной автоматической системой управления. После старта, питающийся электричеством от двигателя, гироскоп обеспечивал стабилизацию «Жука» по направлению [1]. Гироскоп был соединён с вакуум-пневматическим автопилотом (рис. 2), который осуществлял управление рулём направления. Блок-схема системы управления «Жука» представлена на рисунке 3.

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 2 – Вакуум-пневматический автопилот (пример)

Управление рулём высоты осуществлялось аналогичным образом, но датчиком в этом случае уже являлся барометрический альтиметр.  

Перед стартом на беспилотном аппарате задавали значение высоты и максимальное количество оборотов пропеллера, что соответствовало пройденному расстоянию; раскручивали гироскоп. Запуск происходил с рельсовой катапульты, «Жук» выходил на заданную высоту и летел по прямой в сторону цели. Специальное устройство отсчитывало обороты пропеллера и по достижении нужного расстояния (количества оборотов пропеллера сравнялось с заданным), высвобождался пружинный механизм, который отключал двигатель и выбивал болты, держащие крылья. Корпус аппарата падал вниз и достигал цели. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 3 – Блок-схема системы управления  

«Жук» Кеттеринга предназначался для обстрела городов, крупных промышленных центров и мест сосредоточения войск противника на дистанции до 120 км. Он успешно прошёл испытания, в отличие от «воздушной торпеды» Сперри, и был прият на вооружение. Система показала себя лучше, успешней и дешевле предыдущих, но Первая мировая война закончилась, и заказ так и не был выполнен [1]. Всего было изготовлено 45 машин.  

У «Жука» Кеттеринга были реализованы простейшие функции автопилота: управление рулём высоты и рулём направления, отсчитывание пройдённого расстояния, отключение двигателя и сброс крыльев. Неудачи в испытаниях были связаны с проблемами удержания аппарата на курсе. Аппарат мог отклониться от курса как при запуске с рельсовой катапульты, так и во время полёта. Кроме того, «воздушная торпеда» под действием ветра могла завалиться на крыло и упасть. Примитивный автопилот хоть и пытался придерживаться курса, но с сильными порывами ветра или ошибкой при запуске справиться не мог.  

Представим алгоритм управления «Жука» Кеттеринга:

1) Перед стартом задавались максимальная высота и число оборов пропеллера.

2) Происходил запуск с рельсовой катапульты.

3) Аппарат выходил на заданную высоту (контроль высоты осуществлялся с помощью барометрического альтиметра).

4) Автопилот поддерживал неизменный курс благодаря воздействию гироскопа (полёт представлял собой движение по прямой).

5) При достижении заданного числа оборотов (нужного расстояния), происходило отключение двигателя и сброс крыльев. Корпус аппарата падал вертикально вниз в цель.  

Аппарат имел малую дальность и мог двигаться только по прямой из пункта «А» в пункт «Б». Маршрут с большим количеством точек был невыполнимой задачей, как и  возвращение аппарата на место старта.

Выявим технические противоречия (ТП), имеющиеся в описываемой системе, для единообразия в формулировках противоречий все рассматриваемы системы будем называть БПЛА:

ТП1. При повышении степени стабилизации БПЛА по крену, путём введения стабилизирующих элементов на крыльях, недопустимо повышается вес аппарата.

ТП2. При повышении степени стабилизации БПЛА по крену, путём введения стабилизирующих элементов на крыльях, недопустимо повышается сложность конструкции.

ТП3. При повышении степени стабилизации по курсу недопустимо уменьшается расстояние до цели.

ТП4. При повышении сложности маршрута недопустимо повышается сложность конструкции.

Противоречие ТП4 было разрешено использованием приёмов вынесения, непрерывности полезного действия, «посредника», путём замены инерциального автопилота на систему радиоуправления. Этап ТРИЗ-эволюции представлен на рисунке 4.

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 4 – Первый этап эволюции. 

2.       Новая веха: появление радиоуправляемых летательных аппаратов. 

В 1930-х годах армия США получила предложения поставлять радиоуправляемые беспилотные самолёты для различных нужд. Среди компаний, сделавших предложение, была Radioplane Company. Основана она Дени Реджинальдом, бывшим пилотом британской королевской авиации, который эмигрировал в США и стал актёром, а позже основал магазин и компанию по производству радио моделей самолётов [2].  

Radioplane Company предложила армии США линейку радиоуправляемых моделей самолётов, среди которых присутствовала модель Radioplane OQ-2 (рис. 5). Это первый дистанционно-пилотируемый летательный аппарат (ДПЛА), поступивший в массовое производство. В общем было произведено 15000 моделей. Эксплуатация проводилась вплоть до 1948 года [2].  

Radioplane OQ-2 представлял собой самолёт-мишень для обучения зенитных расчётов. Длина – 2,65 м. Размах – 3,73 м. Взлётный вес – 47 кг. Максимальная скорость – 137 км/ч. Максимальное время полёта – 1 час.

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 5 – Внешний вид Radioplane OQ-2 

Запуск происходил с катапульты, а управлялась беспилотная радио модель оператором с земли, который мог имитировать различный ситуации (например, заход истребителя для атаки). Если аппарат оставался цел после полёта, посадка происходила с помощью выбрасываемого парашюта и неубираемого шасси (было не у всех моделей), которое смягчало удар о землю. Блок-схема системы управления представления на рисунке 6.

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 6 – Блок-схема радиоуправления  

Радиоуправление позволило беспилотникам следовать по сложным маршрутам и выполнять сложные манёвры в воздухе, превосходя в этом «Жука» Кеттеринга и «Крылатую торпеду» Сперри. Аппараты получили возможность возвращаться на стартовую позицию, что увеличило количество их использования. Малогабаритная конструкция Radioplane OQ-2 и простота позволили развивать ему большие скорости и покрывать большее расстояние. Однако появилась проблема с малым потолком использования в 2438 м.

Смотрите про коптеры:  Квадрокоптеры dji купить в Минске. Фото и цены интернет-магазинов в каталоге Tomas.by

Аппаратура того времени позволяла эффективно использовать Radioplane OQ-2 только в поле видимости оператора. Именно так оператор с земли мог производить управление беспилотником. Если аппарат вылетал из радиуса видимости, то его можно было контролировать только радаром, что не обеспечивало эффективного наблюдения и снижало точность позиционирования.

При рассмотрении Radioplane OQ-2 можно выявить следующие противоречия:

ТП5. При увеличении дальности, путём увеличения пунктов управления по маршруту движения радиоуправляемого аппарата, недопустимо увеличивается объём наземной аппаратуры управления.

ТП6. При увеличении дальности, путём увеличения пунктов управления по маршруту движения радиоуправляемого аппарата, недопустимо увеличивается количество персонала.

ТП7. При увеличении дальности, путём увеличения объёма топливного бака, недопустимо увеличивается вес.

Второй этап эволюции показан на рисунке 7.

Противоречие ТП7 было разрешено использованием приёмов вынесения, непрерывности полезного действия, «посредника».

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 7 – Второй этап эволюции  

3. Разработки второй мировой войны.

Фау-1 – самолёт-снаряд, прообраз современных крылатый ракет, состоял на вооружении армии Германии в середине Второй мировой войны (рис. 8). Эта ракета создана в рамках проекта «Оружие возмездия». Проект беспилотного аппарата разработан немецкими конструкторами Робертом Луссером и Фритцем Госслау. Разработка производилась в период 1942-1944 гг [3].

Фау-1 была построена по самолётной схеме, в задней части корпуса над рулём курса крепился реактивный двигатель. В процессе разработки проекта появилась необходимость ввести стабилизаторы и гироскоп для стабилизации аппарата во время полёта.

На земле перед запуском беспилотному аппарату задавали значения высоты и курса, а так же дальность полёта. Наведение выполнялось по магнитному компасу. После пуска аппарата (производился с катапульты, либо с самолёта-носителя – модифицированного бомбардировщика Heinkel He 111 H-22) он летел с помощью автопилота по заданному курсу и на заранее определённой высоте. Стабилизация по курсу и тангажу осуществлялась на базе показаний 3-степенного гироскопа: по тангажу суммировались с показаниями барометрического датчика высоты; по курсу – со значениями угловых скоростей от двух 2-степенных гироскопов, используемых для уменьшения колебаний снаряда. Управление по крену отсутствовало, так как Фау-1 была достаточно устойчива вокруг продольной оси [3]. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 8 – Внешний вид Фау-1  

Автопилот был пневматическим устройством, работающим на сжатом воздухе. Золотники пневматических машинок рулей курса и высоты приводились в действие воздушным давлением, в зависимости от показаний гироскопов. Сами гироскопы раскручивались также сжатым воздухом. Расстояние полёта задавалось на специальный механический счётчик, а прикреплённый на нос снаряда анемометр постепенно сводил значение к нулю. По достижении нулевого значения происходило разблокирование ударных взрывателей и отключение двигателя. Примерна блок-схема показана на рисунке 9.

Длина – 7.75 м. Размах крыльев – 5,3 (5,7) м. Максимальная скорость – 656 км/ч (по мере расходования топлива скорость доходила до 800 км/ч). Дальность доходила до 280 км.

Фау-1 могла летать только по прямой (как «Жук» Кеттеринга), однако покрывала большее расстояние и развивала гораздо большую скорость. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 9 – Блок-схема системы управления. 

После рассмотрения Фау-1 были выделены следующие технические противоречия:

ТП8. При упрощении процесса старта, путём отказа от катапульты, недопустимо увеличивается сложность конструкции.

ТП9. При увеличении сложности маршрута недопустимо увеличивается сложность оборудования.

ТП10. При увеличении сложности маршрута недопустимо увеличивается вес аппарата.

На основе вышеописанных противоречий выделен второй этап ТРИЗ-эволюции беспилотных летательных аппаратов (рис. 10).

Противоречия ТП8 и ТП9 были разрешены с помощью приёмов вынесения, непрерывности полезного действия, «посредника», путём замены самолётной схемы на вертолётную. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 10 – Третий этап эволюции.

4. Противолодочный вертолёт.

Проект американского беспилотного летательного аппарата, а если точнее бдеспилотного вертолёта. Gyrodyne QH-50 DASH – первый в мире беспилотный вертолёт принятый на вооружение (рис. 11). Первый его полёт состоялся в 1959 году, и вплоть до 1969, когда ВМС США отказались от проекта, было произведено 700 аппаратов различных модификация. Изначально проектировались как штатное противолодочное вооружение ракетных крейсеров [4]. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 11 – Внешний вид Gyrodyne QH-50 DASH 

Вертолёт был в длину 3,9 м, в высоту 3 м.. Вес неснаряжённого и снаряжённого соответственно 537 кг. и 991кг. Максимальный взлётный вес 1046 кг. Максимальная скорость 148 км/ч. и дальность 132 км. Практический потолок 4939 м. На борту нёс 33,6 галлонов топлива [4].

В отличие от предыдущих систем, аппарату не требовалась взлётная полоса или оборудование (например, катапульта), а требовалась небольшая ровная поверхность.

Беспилотный вертолёт разрабатывался для старта с палубы корабля. Перед запуском к нему подвешивали торпеды.

Контроль управления вёлся с пульта оператора (блок-схема системы управления представлена на рис. 12). На пульт также приходили данные о состоянии аппарата, сигналы оружейной системы. В дальнейшем было предложено ввести два пульта управления. По требованию, один пульт должен был находиться на палубе, а другой в командном пункте.

Так как торпеды весили много, пришлось отказаться от телеаппаратуры. Поэтому запускали сразу два вертолёта: один с аппаратом обнаружения и целеуказания; второй с вооружением.

Проект Gyrodyne QH-50 DASH был отменён из-за несовершенства системы управления и конструктивных дефектов, почти половина аппаратов разбились. Во время полёта у беспилотного вертолёта могло произойти самопроизвольное отключение аппаратуры управления. Также сказалось начало войны во Вьетнаме. Но использование беспилотного вертолёта вплоть до 2006 года как учебное пособие, объект экспериментов и т.д. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 12 – Блок-схема системы управления. 

Выделим противоречия беспилотного вертолёта Gyrodyne QH-50 DASH:

ТП11. При уменьшении габаритов беспилотного аппарата недопустимо уменьшается показатель полезной нагрузки.

ТП12. При уменьшении габаритов беспилотного аппарата недопустимо уменьшается дальность полёта.

Противоречия ТП10 и ТП11 были разрешены с помощью приёмов вынесения, объединения, универсальности, замены механической схемы, путём создания доступных контроллеров полёта для авиамоделистов.

По этим противоречиям составим этап ТРИЗ-эволюции (рис. 13).

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 13 – Четвёртый этап эволюции. 

5. «Беспилотники» в массы. Полётные контроллеры для моделирования.

В наше время беспилотные летательные аппараты перестали быть военными «игрушками». В начале XXI века всё больше и больше различных БПЛА находят применение в гражданских сферах: аэросъёмка, доставка грузов, отдых и досуг, образование и др. Появилось множество схем конструкций (мультикоптеры, самолётного типа и др.). Теперь их можно спокойно купить в магазинах или даже сделать самому при покупке определённых комплектующих. О них и пойдёт речь далее.

Полётный контроллер – это основная плата управления, обеспечивающая функционирование беспилотного летательного аппарата.

Одним из первых популярных полётных контроллеров XXI века был MultiWii (рис. 14). Это открытый проект полётного контроллера на основе Arduino (аппаратной вычислительной платформе, основными компонентами которой являются простая плата ввода/вывода и среда разработки на языке Processing/Wirin (Си подобный)). Используется как элемент системы управления самодельных беспилотных аппаратов (в частности для мультикоптеров). Название MultiWii исторически сложилось потому, что в первых версиях были задействованы гироскопы из контроллера к игровой консоли Nintendo Wii. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу  

Рисунок 14 – Внешний вид платы MultiWii

В данный момент платформа поддерживает большое количество сенсоров. Изначально нужно было докупать гироскопы из контроллера Wii Motion Plus и акселерометр из контроллера Wii Nunchuk, однако сейчас этого делать не нужно.

Так как основой проекта служит Arduino, то подключаемые модули (GPS, радио передатчик и т.д.) совместимо с проектом полётного контроллера ArduPilot (подробнее о нём поговорим ниже). По своей сути это плата с контактами, а не готовая система управления, к которой радиолюбитель может присоединять различные модули (в соответствии с нужными целями). Есть возможность настроить управление по радио пульту (с помощью приемника/передатчика радиосвязи) либо простые функции автопилота, такие как движение по точкам (необходим модуль GPS) и удержание курса (магнитометр). Естественно всё это возможно только при правильной настройке контроллера.

Изначально на плате был 8-битный микроконтроллер ATMega328 (тактовая частота до 20MHz, FLASH-память 32кб, SRAM-память 2кб), либо ATMega2560 (тактовая частота 16MHz, FLASH-память 256кб, SRAM-память 8кб). Но, т. к. проект является открытым, появились любительские версии с 32-битным STM32. Так же присутствуют встроенные датчики MPU6050 (3-осевой гироскоп и 3-осевой акселерометр), BMP085 (барометр) и HMC5883L (электронный магнитный компас). Информация представлена в общем виде и может отличаться для различных версий плат.

На рисунке 15 показана блок-схема системы управления.

Предполагаемый алгоритм управления:

1) Необходимо подключить все необходимые для задачи пользователя модули, предварительно записав программу в микроконтроллер (официальную или самодельную).

2) Далее следует подключить полётный контроллер к питанию и включить.

3) В зависимости от конструкции беспилотного аппарата, следует произвести запуск.

Полётные контроллеры в основном предназначались для радиоуправления. Хоть они и поддерживали некоторые функции автопилота, оператору приходилось контролировать полёт. Например, двигаясь по точкам маршрута, летающий аппарата может врезаться в возникшее препятствие, если не будет принято своевременных мер. Это относится и к остальным моделям полётных контроллеров, описанных ниже. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 15 – Блок-схема системы управления. 

Смотрите про коптеры:  Прошивка квадрокоптера DJI Mavic Pro

В системе выявлены следующие противоречия:

ТП13. При повышении гибкости настройки управления контроллера недопустимо повышается сложность кода.

ТП14. При повышении гибкости настройки управления контроллера недопустимо повышается количество часов, требуемых на это.

Противоречия ТП13 и ТП14 были разрешены с помощью приёмов вынесения, объединения, универсальности, замены механической схемы.

Этап эволюции показан на рисунке 16. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 16 – Пятый этап эволюции.

6. Новые аналоги.

Контроллер CopterControl3D (CC3D) создан в рамках открытого проекта Open Pilot,начатого в 2009 году (рис. 17). Как и MultiWii является небольшой и относительно дешевой программируемой платой, но в отличие от неё разрабатывался специально для квадрокоптеров. Так же получил своё программное обеспечение OpenPilot GCS для настройки. Примерно 90% квадрокоптеров используемых для управления First Person Viev (FPV, вид от первого лица – управление осуществляется не только по радио каналу, но и по дополнительному каналу принимается на экран видео в реальном времени) собираются любителями именно на этом контроллере. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 17 – Внешний вид платы CC3D

На плате присутствует 32-битный микроконтроллер STM32F103 72MHz с FLASH-памятью 128кб и чип MPU6000 (совмещает 3-осевой гироскоп и 3-осевой акселерометр).

Информация представлена в общем виде и может отличаться для различных версий плат.

Блок-схема системы управления показана на рисунке 18 (отличия только в интерфейсах подключения устройств).

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 18 – Блок-схема системы управления 

В системе выявлены следующие противоречия:

ТП15. При повышении гибкости управления контроллера, путём добавления функций автопилота, недопустимо повышается сложность кода.

ТП16. При повышении универсальности использования контроллера недопустимо повышается сложность кода.

Противоречия ТП15 и ТП16 были разрешены с помощью приёмов вынесения, универсальности, самообслуживания, «посредника».

Этап эволюции представлен на рисунке 19. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 19 – Шестой этап эволюции 

7. Решение от Arduino.

Полётный контроллер ArduPilot Mega (рис. 20), разработанный компанией Arduino. Главным отличием от предыдущих является поддержка не только летающих беспилотных аппаратов, но наземных и лодочных систем. Так же помимо радиоуправляемого дистанционного пилотирования – автоматическое управление по заранее созданному маршруту, т.е. полет по точкам, а так же обладает возможностью двухсторонней передачей телеметрических данных с борта на наземную станцию (телефон, планшет, ноутбук и т.д.) и ведение журнала во встроенную память. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 20 – Внешний вид платы 

Контроллер поддерживает программирование, как и прочие продукты Arduino, язык программирования Arduino (является стандартным C с некоторыми особенностями). При грамотной настройке позволяет превратить любой аппарат в автономное средство и эффективно использовать его не только в развлекательных целях, но и для выполнения профессиональных проектов. По сравнению с вышеописанными платами более стабильно ведёт себя во время полёта, может неплохо выполнять некоторые фигуры полёта.

Контроллер поддерживает авиасимулятор через ПО Mission Planner, который позволят настроить управление, проложить маршрут и т.д.

На плате установлен микроконтроллеры ATMega2560 и ATMega32U2 (8-битный, тактовая частота 16 MHz, FLASH-память 32кб, SRAM-память 1 кб), датчики MPU6000 и MS5611 (барометр).

Блок-схема системы управления показана на рисунке 21.

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 21 – Блок-схема системы управления. 

В рассмотренной системе были выявлены следующее противоречие:

ТП17. При повышении гибкости управления контроллера недопустимо уменьшается универсальность использования контроллера.

ТП18. При повышении качества платы недопустимо повышается цена.

ТП19. При повышении гибкости управления контроллера недопустимо повышается сложность схемы подключения периферии.  

Противоречия ТП17 и ТП18 были разрешены с помощью приёмов объединения, дешёвой замены, универсальности, путём создания универсального полётного контроллера.

На рисунке 22 показан этап эволюции. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 22 – Седьмой этап эволюции. 

8. Новое поколение.

Pixhawk – полетный контроллер нового поколения (рис. 23), дальнейшая разработка проекта PX4 и программного кода Ardupilot от 3DRobotics. В контроллере присутствует операционная система реального времени NuttX.

Контроллер поддерживает большое количество систем:

наземные, воздушные, наводные. Поддерживает различные модули и стандарты для их связи. Из-за своей универсальности и стал популярным. Поддерживает использование ПО Mission Planner как ArduPilot.  

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 23 – Внешний вид контроллера Pixhawk 

На плате установлен 32-битный микропроцессор STM32F427 Cortex M4 (168MHz, FLASH-память 2 Мб, RAM- память 256кб) и 32-битный сопроцессор STM32F103. Так же присутствуют датчики: ST Micro L3GD 20 – 3-осевой гироскоп, ST Micro LSM303D – 3-осевой акселерометр/магнитометр, MPU6000 – 3-осевой акселерометр/гироскоп, MEAS MS5611 – барометр.

Блок-схема системы управления показана на рисунке 24. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 24 – Блок-схема системы управления.  

Выявим противоречия описанной системы:

ТП20. При повышении гибкости управления аппарата недопустимо повышается сложность аппаратуры управления.

Противоречия ТП20 были разрешены с помощью приёмов объединения, универсальности, путём создания многофункционального БПЛА с открытым кодом для любительских разработок.

Этап эволюции представлен на рисунке 25. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу  

Рисунок 25 – Восьмой этап эволюции.

9. Готовое решение.

В 2020 году французская фирма Parrot выпустила на рынок свой беспилотный летательный аппарат AR.Drone. Через пару лет была выпущена обновлённая версия Parrot AR.Drone 2.0 (рис. 29). Проект квадрокоптера был полностью открыт для идей пользователей, что помогло ему стать хитом.

У Parrot AR.Drone 2.0 имеются четыре мотора мощностью 14,5 Вт. Максимальная скорость – 18 км/ч. Масса дополнительной полезной нагрузки – 150 г. Процессор ARM Cortex A8 с частотой 1 ГГц. с 800 Гц. DSP TMS320DMC64x для обработки видео сигналов. RAM DDR2 1Гбит. Две камеры: основная для съёмки и режима FPV с разрешением 720p; дополнительная камера с разрешением 240p для измерения горизонтальной скорости, расположена снизу.Wi-Fi точка для подключения устройства управления (смартфон или планшет с ОС Android или iOS) [9]. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу  

Рисунок 29 – Внешний вид Parrot AR.Drone 2.0

Открытость проекта позволяет к готовому аппарату подключать дополнительные компоненты. Это была одна из привлекательных черт описываемого квадрокоптера. Также пользователи могли программировать его полётный контроллер, либо создавать различные приложения для управления на языках C, Java и Objectiv-C.

Примерная блок-схема управления представлена на рисунке 30.

Одна из главных проблем всех беспилотных летающих аппаратов заключается в том, что если во время режима автопилота перед ними возникнет препятствие (будь то стена, дерево, другой летающий аппарат или даже человек) столкновения не избежать. Максимум на что можно рассчитывать, что БПЛА попытается остановиться или оператор вовремя вмешается в процесс. Однако, если прогнозы развития верны и в ближайшее время нас ожидает дальнейшее развитие рынка беспилотных летательных аппаратов, эта проблема будет всё больше набирать актуальность. 

Полетный контроллер на Ардуино? На STM32F104! Руководство по сборке. | Пикабу

Рисунок 30 – Блок-схема системы управления. 

Выявленные противоречия:

ТП21. При добавлении дополнительной аппаратуры, повышающей функционал автопилота, недопустимо повышается вес аппарата.

10. Дальнейшее развитие.

Дальнейшее развитие беспилотных систем, в том числе БПЛА, заключается во внедрении в систему управления искусственного интеллекта. Интеллектуальная система управления позволит ещё больше развить функции автопилота, автоматизировать беспилотные аппараты. При этом действия оператора сводятся только к подготовке аппарату к началу полёта и непосредственно к самому запуску.

Но возникает техническое противоречие ТП21. Это противоречие разрешается принципами объединения, универсальности, непрерывности полезного действия, «посредника».  

Интеллектуальную систему управления можно реализовать на микропроцессорном компьютере (например, Raspberry Pi) с несколькими датчиками (2 видео камеры и лидар). Такая система при движении по заданному маршруту сможет определить появившееся препятствие, которым может быть человек, другой БПЛА или дерево, стена, которые не заметил оператор при составлении маршрута. Данная система будет распознавать объекты методом компьютерного зрения и определять вектор движения этих объектов. После определения вектора движения, система сравнит его с вектором БПЛА и построит маршрут уклонения с минимальным уходом с маршрута. Такая схема несильно повлияет свои весом на характеристики беспилотного летательного аппарата, но значительно повысит степень его «выживаемости».  

Литература и примечания 

[1] Куда полетит беспилотник без пилота – День за днем [электронный ресурс] // LIVEJOURNAL.COM : Живой журнал. – Электрон. данные. URL:
http://novser.livejournal.com/9293

99.html (дата обращения 14.11.2020 г.). – Заглавие с экрана. [2] OQ-2 [электронный ресурс] // AVIA.PRO : Новости авиации. – Электрон. данные. URL:
http://avia.pro/blog/oq-2

(дата обращения 14.11.2020 г.). – Заглавие с экрана.

[3] Фау-1 [электронный ресурс] // ANAGA.RU : Информационный портал «Столичный комитет». 2008 г. – Электрон. данные. URL:
http://anaga.ru/v-1.htm (дата обращения

17.12.2020 г.). – Заглавие с экрана. [4] Gyrodyne Helicopter Co. Mfg of QH-50 series of VTOL

UAVs. [электронный ресурс] // GYRODYNEHELICOPT ERS.COM : Информационный сайт. – Электрон. данные. URL:
http://www.gyrodynehelicopters.com/dash_weapon_system.htm

(дата обращения 14.11.2020 г.). – Заглавие с экрана.

[5] AR.Drone 2.0: обзор возможностей и дополнений [электронный ресурс] // XAKER.RU : Электронный журнал. – Электрон. данные. URL:
https://xakep.ru/2020/11/11/ar-drone-2-0/

(дата обращения 24.12.2020 г.). – Заглавие с экрана.

Оцените статью
Добавить комментарий

Adblock
detector