Определение робота. Классификация роботов (Обзор Сбербанка, часть 2) — Журнал «Я Robot»

Определение робота. Классификация роботов (Обзор Сбербанка, часть 2) — Журнал «Я Robot» Конструкторы

Исследовательская работа “классификация роботов” | образовательная социальная сеть

МАОУ «Средняя общеобразовательная школа № 39 с углубленным изучением английского языка» Вахитовского района города Казани

Научно-исследовательская работа

в рамках XVII Всероссийского детского конкурса научно-исследовательских и творческих работ «ПЕРВЫЕ ШАГИ В НАУКЕ»

Тема: «Классификация роботов»

Работу выполнил:

Каримов Мурат Ирекович

ученик 1 «Д» класса

МАОУ «СОШ № 39» г. Казани

Научный руководитель:

Макарова Елена Ивановна

учитель начальных классов

I квалификационной категории

МАОУ «СОШ № 39» г. Казани

2023-2023 учебный год

Оглавление

Введение                                                                                                        стр. 3                    

  1. Роботы. История создания и развития робототехники.           стр. 4
  2. Устройство роботов.                                                                        стр. 7   
  3. Основные виды роботов:                          
  1. Манипуляционные и мобильные роботы.                                       стр. 8
  2. Классификация роботов по способу перемещения.                       стр. 9
  3. Классификация роботов по типу управления.                                стр. 11
  4. Классификация роботов по внешнему виду. Робот-андроид.       стр. 13
  5. Классификация роботов по функциональному назначению.        стр. 17

Заключение                                                                                                  стр. 24

Список использованной литературы                                                     стр. 26


Введение.

Современный мир теперь сложно представить без роботов. Эти автоматические устройства, созданные человеком для различных целей – образовательных, производственных, развлекательных и др., прочно вошли в нашу жизнь. Теперь робот – это не фантастика, не мечта, а реальность. Робот-пылесос поможет вам с уборкой,  летающий робот-беспилотник охраняет границы нашей страны, робот-программа помогает по запросу быстро найти нужную информацию в интернете. Для того, чтобы лучше понимать перспективы развития робототехники и применения роботов в будущем нужно освоить такое понятие как робот, узнать, как и из чего они собираются, как и кем управляются, какие возможности открываются перед человеком при использовании такой техники и с какими проблемами он сталкивается при этом.

Задачей данной работы было изучить понятие «робот», их устройство, проследить развитие робототехники во времени. В зависимости от строения и назначения роботов была проведена классификация этих автоматических устройств, что и было целью работы.  В работе приведены классификации, доступные для понимания человека без специального технического образования. Роботы разделены по следующим основаниям: способ перемещения, тип управления, внешний вид и функциональное назначение. 

В последующих работах планируется изучить роботов и классифицировать их не с точки зрения механики, а с позиции других наук – информатики и электроники.

I. Роботы. История создания и развития робототехники

Согласно Американскому институту по изучению роботической техники, робот представляет собой репрограммируемый мультифункциональный манипулятор, предназначенный для перемещения материалов, предметов с целью выполнения различных задач. В словаре Вебстера (Websters’ English Dictionary) робот определяется как «автономный аппарат или устройство, осуществляющий различные действия, свойственные человеку, и выполняющий их как будто под контролем человеческого разума». Вышеуказанные определения робота объединяют три основных функции – способность выполнять определенные действия, возможность решать различные задачи на запрограммированной основе, а также способность робота интерпретировать и модифицировать ответы на команды оператора.

Слово «ро́бот» происходит из словацкого языка (robot, от robota — подневольный труд) и означат автоматическое устройство. Такое устройство действует по заранее заложенной программе и получает информацию об окружающем мире через датчики, как живые организмы через органы чувств. Робот самостоятельно выполняет разнообразные операции, которые обычно выполняет человек. При этом робот может получать команды от человека или действовать самостоятельно (автономно).

Понятие «робот» впервые было использовано чешским писателем Карелом Чапеком  в пьесе «Р. У. Р.» («Россумские универсальные роботы») в 1920 году.

Еще с древних времен человечество пыталось использовать машины для облегчения своего труда, выполнения наиболее тяжелой работы, требуемой значительных физических усилий.

Первые искусственные создания упоминаются еще в мифах Древней Греции. Миф о Кадме рассказывает, что он, убив огромного змея, разбросал его зубы по земле и запахал их, а из зубов выросли солдаты. Миф о скульпторе Пигмалионе повествует о том, как он вдохнул жизнь в созданную им статую — Галатею. Также в мифе про Гефеста рассказывается, как он выковал себе механических помощников, которые раздували огонь, качая мехи. Мифы и легенды о механических существах, созданных для помощи, есть и скандинавской культуре, и у восточных народов.

Первое практическое применение механических людей с автоматическим управлением — относятся к  3 веку до н.э.. На маяке на острове Фарос (одно из 7 чудес света), были установили механические статуи – фигуры. Например, одна из фигур всегда указывала рукой на солнце на всем его пути и опускала руку вниз, когда оно заходило, другая отбивала каждый час днем и ночью, по третьей можно было узнать направление

Прообразами роботов были также механические фигуры, созданные арабским учёным и изобретателем Аль-Джазари (1136—1206). Он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.

Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Его записи, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн, скорее всего, основан на анатомических исследованиях ученого. Неизвестно, пытался ли Леонардо построить такого робота.

В XVI—XVIII веках в Европе получило значительное распространение конструирование автоматонов — заводных механизмов, внешне напоминающих человека или животных и способных иногда выполнять достаточно сложные движения. Один из наиболее ранних образцов таких автоматонов — «испанский монах» (примерно 40 см в высоту), способный прогуливаться, ударять себя в грудь правой рукой, кивать головой, периодически он подносит находящийся в его левой руке крест к губам и целует его. Считается, что этот автоматон был изготовлен примерно в 1560 году.

С начала XVIII века начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.

В конце 19 в. русский инженер Пафнутий Чебышёв придумал стопоход – первый в мире шагающий механизм, обладающий высокой проходимостью.  Также в конце 19 в. Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно.

В 30-е годы 20 века — появились конструкции внешне напоминающих человека устройств, способных выполнять простейшие движения и воспроизводить фразы по команде человека.  

В 1968 году — японская компания Kawasaki Heavy Industries, Ltd. собрала своего первого промышленного робота. С тех пор Япония начала неуклонное движение к тому, чтобы стать мировой столицей роботов — с более чем 130 компаниями, вовлеченных в их производство. В настоящее время на долю Японии приходится около 45 % функционирующих в мире промышленных роботов.

Робототе́хника (от робот и техника) — это наука, занимающаяся разработкой автоматизированных технических систем для производства. Эта наука основана на таких дисциплинах, как электроника, механика, телемеханика, информатика, а также радиотехника и электротехника. Выделяют строительную, промышленную, бытовую, авиационную, экстремальную – военную, космическую, подводную, и другие виды  робототехники.

II. Устройство роботов

Внешний вид и устройство современных роботов разнообразны. В промышленном производстве используются роботы, которые совсем не похожи на человека. Это связано с тем, что создание человекоподобного рода не всегда экономически выгодно. А для некоторых производственных технических процессов в этом нет необходимости. При всем своем разнообразии, эти автоматические устройства имеют общие составляющие, и общий принцип работы устройств.

Приводы — это «мышцы» роботов. В настоящее время самыми популярными двигателями в приводах являются электрические, но применяются и другие, использующие химические вещества или сжатый воздух, например пьезодвигатели, когда крошечные пьезоэлектрические ножки, вибрирующие с частотой более 1000 раз в секунду, заставляют мотор двигаться по окружности или прямой. Воздушные мышцы — простое, но мощное устройство для обеспечения силы тяги. При накачивании сжатым воздухом мышцы способны сокращаться до 40% от своей длины. Причиной такого поведения является особый плетеный материал, который может растягиваться и сжиматься.

Однако, термин «робот» используют не только для автоматических устройств, но и для компьютерных  программ, примерами которых могут служить, например, боты или поисковые роботы. Результатом работы поискового робота является большое количество ответов на поисковый запрос. Такая информационная система достаточно эффективна, так как способна обслужить большее количество людей, предоставив им необходимую информацию.

III. Основные виды роботов (классификация)

1. Манипуляционные и мобильные роботы

Основные классы роботов –  это манипуляционные и мобильные роботы.

Манипуляционный робот — автоматическая машина (стационарная или передвижная), состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления, которая служит для выполнения в производственном процессе двигательных и управляющих функций. Такие роботы производятся в напольном, подвесном и портальном исполнениях. Получили наибольшее распространение в машиностроительных и приборостроительных отраслях.

Мобильный робот — автоматическая машина, в которой имеется движущееся шасси с автоматически управляемыми приводами. Такие роботы могут быть колёсными, шагающими и гусеничными (существуют так же ползающие, плавающие и летающие мобильные робототехнические системы).

Также роботы разделяются:

1. По способу перемещения

2. По типу управления

3. По внешнему виду

4. По функциональному назначению

Рассмотрим подробнее каждый вид роботов.

2. Классификация роботов по способу перемещения

По способу перемещения роботы делятся на колесные, гусеничные, шагающие, летающие, ползающие, плавающие.

Наиболее распространёнными роботами являются четырёхколёсные и гусеничные роботы. Есть также роботы, имеющие другое число колёс — два или одно. Такого рода решения позволяют упростить конструкцию робота, а также придать роботу возможность работать в более узких пространствах, где четырёхколёсная конструкция будет достаточно широкой и неудобной. Однако, для устойчивости двухколесных роботов требуются специальные балансирующие устройства. Одноколёсные роботы во многом представляют собой развитие идей, связанных с двухколёсными роботами. Для перемещения в пространстве в качестве единственного колеса может использоваться шар, приводимый во вращение несколькими приводами. Примером может служить шаробот. Для перемещения по неровным поверхностям, траве и каменистой местности разрабатываются шестиколёсные роботы, которые имеют большее сцепление, по сравнению с четырёхколёсными. Ещё большее сцепление обеспечивают гусеницы. Например, многие современные боевые роботы, а также роботы, предназначенные для перемещения по грубым поверхностям, разрабатываются как гусеничные.

Перемещение шагающего робота с использованием «ног» представляет собой сложную задачу динамики. Уже создано некоторое количество таких роботов, но они пока не могут достичь такого же устойчивого движения, какое присуще человеку. Роботы, использующие две ноги, как правило, хорошо перемещаются по полу, а некоторые конструкции могут перемещаться по лестнице. Также создано множество механизмов, перемещающихся на более чем двух конечностях, это например робот-собака, робот-мул ил робот-таракан. Такие  конструкции легче в проектировании.

Большинство современных самолётов являются летающими роботами, управляемыми пилотами. Автопилот способен контролировать полёт на всех стадиях — включая взлёт и посадку. К летающим роботам относятся также беспилотные летательные аппараты, к ним относятся крылатые ракеты.

Существует ряд разработок ползающих роботов, перемещающихся подобно змеям или червям. Предполагается, что подобный способ перемещения может придать им возможность перемещаться в узких пространствах. Их, например, можно использовать для поиска людей под обломками рухнувших зданий.

Так же есть разработки плавающих роботов. Они передвигаются в воде подобно рыбам или медузам. Эти аппарат, достаточно бесшумны и манёвренны.

Роботы, задействованные в производстве на промышленных объектах, чаще всего передвигаются вдоль монорельсов, по напольной колее и т. д. Если есть необходимость перемещения по наклонным или вертикальным плоскостям то в промышленных роботах используются «шагающие» механизмы с вакуумными присосками. 

3. Классификация роботов по типу управления

По типу управления робототехнические системы подразделяются на биотехнические, автоматические и интерактивные.

  1. Биотехнические:

2. Автоматические:

3. Интерактивные:

Основные задачи управления роботами:

4. Классификация роботов по внешнему виду. Робот-андроид

Внешний вид и конструкция современных роботов могут быть весьма разнообразными. Как уже было отмечено выше, в промышленном производстве широко применяются различные роботы, внешний вид которых (по причинам технического и экономического характера) далёк от «человеческого». Также роботами называют и некоторые программы – боты или поисковые системы.

В презентации, кроме промышленных видов, были показаны и другие роботы – робот-мул, робот-змея, роботы похожие на машину или танк. Вот еще несколько интересных видов – робот-собака, робот-разведчик в виде таракана, робот-трансформер, робот-муравей, самоуправляемый автомобиль, робот-беспилотник, роботизированная рука. Уже создан человекоподобный робот – андроид, который способен не только двигать руками и ногами, выполняя определенные функции, но и выражать свои эмоции — счастье, страх, удивление, грусть, гнев, отвращение — с помощью жестов и мимики.

Современные человекоподобные роботы.

ASIMO — робот-андроид, созданный корпорацией Хонда. Ростом в 130 сантиметров и весом в 54 килограмма, робот похож на маленького астронавта, который несет рюкзак. Он умеет ходить на двух ногах, копируя человеческую походку скоростью в 6 км/ч, использовать свои руки, говорить и слушать, видеть и узнавать людей и объекты. Используя зрительную информацию, которую собирает вмонтированная в голову робота видеокамера, ASIMO распознает движения множества объектов, а также оценивает расстояние от них и их направление. С помощью комплекса этих технологий робот может следить за перемещениями людей камерой, следовать за человеком или поприветствовать его, когда он приближается. ASIMO умеет интерпретировать позиции и движения руки, распознавать позы и жесты. Благодаря чему робот может реагировать не только на голосовые команды, но и на естественные телодвижения людей. Таким образом, он, например, понимает, когда ему предлагают рукопожатие или когда человек ему машет, и отвечает взаимностью. Кроме того, он понимает, когда ему указывают направление движения. ASIMO умеет анализировать окружающие объекты и ландшафт и действовать так, чтобы это было безопасно для него и находящихся рядом людей. Например, он узнает потенциально рискованные объекты, такие, как лестницы, а также останавливается или обходит людей и другие движущиеся объекты, чтобы не столкнуться с ними. Возможности робота распознавать род звуков углубились, и теперь он знает разницу между голосами и прочими звуками. Он отвечает на свое имя, поворачивается лицом к человеку, с которым разговаривает, реагирует на внезапные необычные звуки вроде упавшего предмета или столкновения, и поворачивает голову в этом направлении. ASIMO может узнавать человеческие лица, даже когда человек двигается. Он может отдельно различать 10 человеческих лиц. Когда их зарегистрируют в его памяти, он будет обращаться к ним по имени.
Робот Альберт Хубо (Albert HUBO) или Einstein Robot — это андроидный робот. Его внешний вид составляет голова, которая копирует голову ученого Альберта Эйнштейна, и туловище довольно известного гуманоидного робота Хубо. Модель для тестирования и воспроизведения роботом человеческих Голова имеет 35 суставов, благодаря чему может выражать различные эмоции на лице, пользуясь независимыми движениями глаз и губ. Также в голове есть две камеры для визуального распознавания. 

Робот-гиноид Aiko была создана канадским робототехником-любителем по имени Чунг Ле. Вес 30 кг, рост 151 см. Она умеет разговаривать, читать текст, распознавать предметы и цвета, решать математические задачи, реагировать на внешние раздражители[1]. Поначалу Aiko не умела ходить, но сейчас этот вопрос практически решен. «Кожа» Aiko состоит из мягкого силикона и она способна «чувствовать боль». Главной целью создания проекта Aiko является помощь и уход за стариками и больными людьми, а также работа в офисе, уход за домом и развлечение детей. В данный момент Aiko знает два языка японский и английский. У первой модели Aiko был грубый и очень не похожий на человеческий голос. Однако ситуация улучшилась — голос стал больше похож на мягкий голос девушки, в большей степени благодаря уникальному органу — в точности скопированному с оригинала человеческому языку.

TOPIO — андроид, разработанный для игры в настольный теннис против человека. Обладает внешностью, напоминающей  человеческую, перемещается на двух ногах. Робот разработан в 2005 году вьетнамской компанией TOSY, занимающейся разработками в области робототехники. TOPIO 3 имеет рост 1 метр 88 сантиметров и весит порядка 120 кг. Все версии робота используют самообучающуюся систему искусственного интеллекта, позволяющую роботу улучшать свои навыки в процессе игры.

EveR-1 — робот, похожий на 20-летнюю кореянку: её рост 1,6 метра, а вес — около 50 килограммов. Ожидается, что андроиды, вроде EveR, смогут служить гидами, выдавая информацию в универмагах или музеях.

Repliee R-1 — человекоподобный робот с внешностью японской пятилетней девочки, предназначен для ухода за пожилыми и недееспособными людьми

HRP-4C — робот-девушка, предназначенная для демонстрации одежды. Рост робота составляет 158 см, а вес вместе с батареями — 43 кг. У этого андроида достаточно хорошая мимика , позволяющая выражать эмоции.

Repliee Q2 — робот-девушка была показан на международной выставке World Expo, проходившей в Японии. На демонстрациях он исполнял роль телевизионного репортера-журналиста, при этом постоянно взаимодействуя с людьми. В роботе были установлены всенаправленные камеры, микрофоны и датчики, которые позволяли Repliee Q2 без особых трудностей определять человеческую речь и жестикуляцию.

Ибн Сина — андроид, названный в честь древнего персидского философа и врача Ибн Сины. Говорит на арабском языке, способен самостоятельно найти своё место в самолёте, общаться с людьми. Распознаёт выражение лица говорящего и прибегает к соответствующей ситуации мимике. Его губы двигаются довольно монотонно, однако отмечается, что особенно хорошо у него получается поднимать брови и прищуривать глаза.

Фрэнк  — первый биоробот, созданный в 2023 году группой специалистов во главе с доктором Бертольтом Мейером, который является первым человеком с бионической рукой. «Bionic Man» как поясняют ученые, состоит из 28 искусственных частей человеческого тела, которые в настоящий момент освоены учеными и медиками. В их число входят сердце, селезенка, щитовидная железа, почки и легкие. Правда, воссоздать человеческий мозг ученым пока не удалось. Сейчас «мозгом» роботу служат электронные микросхемы и компьютер, который удаленно (через Bluetooth) управляет его действиями. Новый робот умеет дышать, ходить, видеть и даже вести беседу. Лицо робота изготовлено из силикона. Его «прототипом» послужил сам Бертольт Мейер.

5. Классификация роботов по функциональному назначению

В зависимости от функционального назначения, выделяют следующие типы роботов:

–  Аптечный робот.

Для автоматизации работы аптек немецкие инженеры разработали робота, позволяющего экономить время на поиск лекарства. В 1996 году был представлен первый в мире робот-фармацевт для автоматизации выдачи наиболее востребованных медикаментов в аптеке.

–  Промышленный робот.

Промышленный робот — предназначен для выполнения различных технологических операций в производственном процессе. Такие роботы способны выполнять производственные операции по 24 ч в сутки. и способны заменить человека на опасных производствах, т.к. не подвержены воздействию газов и выбросу опасных химических веществ. При неизменном уровне качества работы такие механизмы позволяют увеличить производительность труда в целом.

Первые промышленные роботы начали создавать в середине 50-х годов XX века в США. Сначала были разработаны погрузочно-разгрузочные манипуляторы, затем появились роботы для сборочных и других работ.

–  Транспортный робот.

Относится к промышленным роботам. Используется для погрузо-разгрузочных работ.

– Подводный робот.

Существуют как российские, так и зарубежные разработки роботизированных подводных аппаратов, которые способны работать на различной глубине. Например, мобильный комплекс «Пантера Плюс» используется для прокладки кабеля по дну, обезвреживания мин и помощи в спасении затонувшей подлодки. Его механические манипуляторы настолько чувствительны, что способны вязать из канатов узлы под километровой толщей воды. Он оборудован дисковой пилой  для обреза тросов, тросорезом  для перекусывания стальных проводов. Установленные на нем сонары и сенсоры найдут иголку в толще ила. Мощные прожекторы позволяют работать в полной темноте, а сверхчувствительные камеры передают на поверхность видео отличного качества.

Управление по передовым технологиям и программам американского ЦРУ разработало беспилотный подводный аппарат в виде робота-сома, который предназначен для изучения подводных обитателей и водоемов.

– Бытовой робот.

Бытовой робот предназначен для помощи человеку в повседневной жизни. В 2007 году Билл Гейтс опубликовал статью «Робот в каждом доме» о значительном потенциале роботов в том числе домашних и бытовых роботов для социума. Наиболее распространены роботы в виде игрушек, роботы-няни, роботы-помощники в домашнем хозяйстве, роботы-экскурсоводы и роботы-официанты.

Роботы-игрушки весьма разнообразны. Это роботы в виде животных, кукол, динозавров. В серии развивающих игрушек LEGO есть набор конструктора LEGO Mindstorms для создания программируемого робота. 

Социальный робот способен в автономном или полуавтономном режиме взаимодействовать и общаться с людьми в общественных местах или дома. Это роботы: няни и сиделки (Wakamura, RIBA, PaPeRo, Hubo), дворецкие (Pepper, Cubic), роботы телеприсутствия (Romo,Double, Даша, R.Bot, Webot, Promobot), роботы-учителя (андроид Пушкин) и помощники для детей с аутизмом (Nao) и другие виды. Такие роботы помогают молодым родителям укладывать детей спать. Они крепятся к детской кроватке с помощью специальных механизмов. Плач младенца улавливает микрофон. Затем в действие вступают специальные механизмы, которые начинают плавно качать кроватку. Также их используют для реабилитации маломобильных людей и инвалидов, давая им возможность общаться, удаленно работать и развлекаться.

Роботы-помощники в домашнем хозяйстве – это и весьма популярные роботы-пылесосы, полотёры, газонокосилки, а также роботы для чистки бассейнов и водосточных желобов. Как правило, эти роботы способны самостоятельно перемещаться в помещении, возвращаясь по мере необходимости на зарядную станцию.

Робот для обеспечения безопасности и боевой робот.

В последнее время роботы всё чаще применяются силовыми структурами: военными, полицией, аварийно-спасательными службами.

Для оперативной разведки используют «летающих роботов» – беспилотные летательные аппараты. При проведении под водой обследования потенциально опасных объектов и поисково-спасательных работ службы МЧС России используют подводные роботы серии «Гном», роботизированные установки пожаротушения.

Боевые роботы заменяют человека в боевых ситуациях или при работе в условиях, несовместимых с возможностями человека в военных целях, например, разведка, боевые действия, разминирование. В настоящее время большинство боевых роботов являются устройствами телеприсутствия, и лишь очень немногие модели имеют возможность выполнять некоторые задачи автономно, без вмешательства оператора.

Разработка боевых роботов ведется с начала 20 в. В 1910 году в США возникла идея использовать летательные аппараты без человека. По замыслу управляемое часовым механизмом устройство в заданном месте должно было сбрасывать крылья и падать как бомба на врага. Получив финансирование армии США, были построены и испытаны такие беспилотные устройства. Но в боевых действиях они так и не применялись.

В Советском Союзе в начале 30-х годов 20 в. Сталиным был утверждён план реорганизации войск, в котором делалась ставка на танки. В связи с этим были построены телетанки — управляемые в боях по радио на расстоянии, без экипажа. Очень скоро у этих конструкций обнаружилась «ахиллесова пята»: однажды, в ходе учений, машины внезапно перестали выполнять команды операторов. После тщательного осмотра техники никаких повреждений обнаружено не было. Немногим позже было установлено, что высоковольтная линия передачи тока, проходящая вблизи учений, создавала помехи для радиосигнала. Также радиосигнал терялся на пересечённой местности. С началом Отечественной войны разработки по усовершенствованию телетанков прекратились.

После окончания Второй мировой войны стали появляться высокоточные интеллектуальные роботы, способные анализировать, видеть, слышать, чувствовать, различать некоторые химические вещества и производить химические анализы воды или почвы.В 1948 году в США был создан разведывательный беспилотный летательный аппарат и уже в 1951 году «беспилотник» был пущен в массовое производство.

В 1979 году, в техническом университете имени Н. Э. Баумана, по заказу Комитета Государственной Безопасности СССР был сделан сверхлёгкий мобильный робот для обезвреживания взрывоопасных предметов.

С начала XXI века многие страны увеличили инвестиции в разработки новых технологий в робототехнике. Разработаны и применяются роботы-разведчики (сухопутные и подводные), роботы-транспортировщики, роботы-часовые, предназначенные для охраны границ. Американцами разработаны боевые роботы, снабжённые крупнокалиберным пулемётом.

Из серийно производящегося вооружения известен также российский самоходный зенитный ракетно-пушечный комплекс Панцирь-С1, который может работать в автоматическом режиме как в отдельной боевой единице, так и в составе подразделения из нескольких боевых машин. Правозащитники выступают против боевых роботов в связи с их возможной бесконтрольностью. Например, они могут убивать раненых и сдающихся в плен противников, им трудно отличить бойцов противника от мирных жителей).

– Медицинский робот.

В последние годы роботы получают всё большее применение в медицине; в частности, разрабатываются различные модели хирургических роботов. Первая операция с применением хирургического робота была проведена в 1992 году. С 2000 года серийно выпускается робот Da Vinci, предназначенный для лапароскопических операций и установленный в нескольких сотнях клиник по всему миру.

Этот робот состоит из двух блоков, один предназначен для оператора, а второй — четырёхрукий автомат — выполняет роль хирурга. Одна из «рук» робота держит видеокамеру, передающую изображение оперируемого участка, две другие в режиме реального времени воспроизводят совершаемые хирургом движения, а четвёртая «рука» выполняет функции ассистента хирурга. Врач-хирург садится за пульт, который даёт возможность видеть оперируемый участок в 3D с многократным увеличением и использует специальные джойстики, для управления инструментами.

Стоимость системы Da Vinci около 2 млн. долл. США. В России установлено чуть менее тридцати таких хирургических систем.

– Наноробот.

Нанороботы, или наноботы — это роботы, размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ.

На данный момент, нанороботы находятся в научно-исследовательской стадии создания. Разработке компонентов наноустройств и непосредственно нанороботам посвящён ряд международных научных конференций.

В 2023 году были впервые продемонстрированы нанороботы на основе ДНК, способные перемещаться в пространстве.

Первое полезное применение наномашин, если они появятся, планируется в медицинских технологиях, где они могут быть использованы для выявления и уничтожения раковых клеток. Также они могут обнаруживать токсичные химические вещества в окружающей среде и измерять уровень их концентрации. Также нанороботы могут быть использованы как транспортеры для доставки лекарств, биомедицинский инструментарий, в качестве средств наблюдения и шпионажа, а также в качестве оружия, для космических исследований.

Так как нанороботы имеют микроскопические размеры, то их, вероятно, потребуется очень много для совместной работы в решении микроскопических и макроскопических задач.

– Робот-программа.

Робот, или бот, а также интернет-бот, www-бот — это специальная программа, которая выполняет автоматически и/или по заданному расписанию какие-либо действия. При обсуждении компьютерных программ термин употребляется в основном в применении к Интернету.

Обычно боты предназначаются для выполнения работы, однообразной и повторяемой, с максимально возможной скоростью (очевидно, намного выше возможностей человека).

Заключение.

Представленные в работе классификации не являются полными, исчерпывающими, в связи с тем, что робототехника является одной из динамично развивающихся наук, а роботостроение – одной самых перспективных отраслей производства. И в своем сочетании они будут предлагать все новые виды роботов, согласно запросам жизни и деятельности человека.

Те же виды роботов, которые рассмотрены в данной работе, постоянно усовершенствуются с помощью технологий. Так человекоподобные роботы – андроиды становятся способными к решению логических задач, обретают искусственную кожу, снабженную сенсорами по подобию человеческой тактильной памяти, которая позволяет нам помнить ощущения при прикосновении даже после контакта с предметами.

Изобретен робот способный ездить по вертикальной стене. Благодаря своей конструкции VertiGo способен передвигаться по стене даже с неровной поверхностью, например, по кирпичной кладке. Устройство длиной около 60 сантиметров представляет собой четырёхколесную платформу, которая имеет два независимых меняющих угол наклона пропеллера. Они работают аналогично спойлерам на автомобилях, создавая силу, прижимающую колёса конструкции к полу или стене. Пропеллеры меняют вектор тяги, изменяя угла наклона, поэтому робот способен переезжать с горизонтальной поверхности на вертикальную.

Однако при всей перспективности роботостроения существует ряд проблем, возникающих при использовании роботов. Это и проблемы этики – например, проблема использования военных роботов, проблема продления жизни людей на земле за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток. Решать подобные проблемы призвана робоэтика – «этика робототехники». Это понятие используется, чтобы обозначить отношение этики именно к роботам (так как это понятие связано с поведением человека). Данная сфера описывает, как люди проектируют, строят, используют роботов и относятся к ним и другим творениям с искусственным интеллектом.

На январском экономическом форуме в Давоссе одной из официальных тем станет так называемая «четвертая технологическая революция». В числе тем, которые будут обсуждаться на форуме, будут гипотетическое участие роботов в войнах и замена роботами специалистов, принадлежащих к среднему классу.

Представленная работа станет моим первым шагом к изучению роботостроения, использования роботов и проблем распространения робототехники.

Список использованной литературы:

Боголюбов А.Н., Никитин Д.А. Популярно о робототехнике/ Отв. ред. В.Д. Новиков. Киев: Наук, думка, 1989. 200 с.

Василенко H.B., Никитин К.Д., Пономарёв В.П., Смолин А.Ю. Основы роботехники. / под ред. К.Д. Никитина – Томск: МГП «РАСКО», 1993.

Кобринский А.Е. Вот они – роботы. М.: Наука, 1972. 113 с.

Макаров И. М., Топчеев Ю. И.  Робототехника: История и перспективы. — М.: Наука; Изд-во МАИ, 2003.  349 с.

Отряшенков Ю. М. Юный кибернетик. — Детская литература, 1978.

Электронные ресурсы:

http://aviadron.ru/

http://edurobots.ru/

http://geektimes.ru/hub/robot/

http://gizmod.ru/roboty/

https://kantiana.ru/news/143/161510/

http://novate.ru/blogs

http://postnauka.ru/

http://potustorony.ru

 http://roboting.ru/

http://robot-ex.ru

http://robo-hunter.com/

http://techvesti.ru/robot

https://ru.wikipedia.org/wiki/Робототехника

https://ru.wikipedia.org/wiki/робот

Мобильные роботы, способные перемещаться по стене

Для перемещения по вертикальной стене, очевидно, необходимо каким-то образом зацепляться за поверхность стены. Наиболее распространенные методы зацепления основаны на использовании различных адсорбционных механизмов. В качестве таких механизмов могут использоваться, например, вакуумные присоски, сходные по принципу действия со щупальцами осьминога.

Присоски выполняются в виде опрокинутых чашечек, плотно прилегающих к поверхности стены; эффект зацепления достигается за счет создания отрицательного давления в полости чашечки в результате удаления (откачки) оттуда воздуха. Если стена и конечности выполнены из соответствующих металлов, зацепления можно добиться, используя магнитные свойства этих материалов.

Пользуясь первым из двух перечисленных способов, следует учитывать, что, какой бы высокий вакуум ни удалось создать в полости чашечки-присоски, величина отрицательного давления никогда не превысит значения 1 атм. Поэтому для надежного удержания достаточно тяжелых аппаратов диаметр чашечек (площадь присасывания) должен быть достаточно большим.

Кроме того, если между краем чашечки и плоскостью стены будет существовать хотя бы малейший зазор, то получить высокий вакуум не удастся, и величина отрицательного давления будет значительно меньше 1 атм. Таким образом, степень шершавости поверхности является решающим фактором при определении целесообразности использования роботов с вакуумными присосками.

Очевидно, что в тех случаях, когда на стене имеются царапины, желобки, буртики или уступы, о применении вакуумных механизмов не может быть и речи. Следовательно, обычные вакуумные присоски нельзя считать универсальным средством для решения задачи о перемещении роботов по стенам.

Однако нужно иметь в виду, что возможны ситуации, в которых сочетание вакуумных присосок с шагающими механизмами в конструкциях мобильных роботов оказывается весьма эффективным. В качестве одной из таких ситуаций можно рассматривать перемещение роботов по бортовым стенкам крупных судов при выполнении каких-либо строительных или ремонтных работ.

Шероховатость наружной бортовой поверхности незначительна, и вакуумные присоски могут надежно удерживать шагающий аппарат. Роботы, способные перемещаться по гладким стенам, необходимы также для контроля, обслуживания и ремонта крупных емкостей, таких, как котлы атомных электростанций и нефтеналивные цистерны-танки.

Практическое применение магнитного способа зацепления за поверхность стены сопряжено с двумя проблемами. Во-первых, его использование ограничено небольшим набором соответствующих материалов, из которых могут быть изготовлены стена и конечности мобильного робота.

* ()

Несмотря на отдельные успехи, работы по созданию практичных мобильных роботов, способных уверенно перемещаться по вертикальной поверхности, пока еще далеки от завершения. Одной из центральных проблем в этом направлении остается разработка способов, обеспечивающих надежное удержание на гладкой стене мобильного аппарата с установленным на нем манипулятором, предназначенным для выполнения каких-либо технологических операций на стене.

Кроме того, потребуются технические и алгоритмические средства, позволяющие “настенному” роботу распознавать препятствия при перемещении по стене (например, окно или эркер при перемещении по стене многоэтажного дома) и обходить их, меняя произвольным образом направление движения. Очевидно, что для современного уровня развития техники и та и другая задачи оказываются чрезвычайно трудными.

Заслуживающий внимания “настенный” мобильный робот был разработан Научно-исследовательским центром проблем пожарной безопасности при пожарном управлении Токийского муниципалитета. Этот робот “Rescue climber” (“Спасатель-восходитель”) в отличие от большинства настенных роботов с вакуумными присосками имеет несколько иной принцип зацепления.

С помощью мощного насоса вакуум создается не в чашечках присосок, а во всем объеме между дном корпуса робота и стеной. Удерживаясь в результате разрежения в вертикальном положении, робот перемещается по стене с помощью обычных колес, расположенных в нижней части корпуса.

Еще один настенный робот был разработан сотрудниками Научно-исследовательского центра проблем механики д-ром Носаки и д-ром Икэда (рис. 4.17). Этот экспериментальный настенный робот удерживается на вертикальной поверхности за счет отрицательного давления под присосками, которое создается специальным вакуумным насосом.

Помимо подлинно мобильных настенных роботов, способных автономно перемещаться по вертикальной поверхности в произвольном направлении, разрабатываются и активно применяются так называемые полуавтономные роботы, которые могут двигаться вверх-вниз по стенам при помощи тросов и лебедки, установленной где-либо под потолком или на крыше здания.

В частности, такие роботы используются для мойки окон в высотных зданиях. К подвижной части робота-мойщика крепится гондола, в которой размещается устройство для автоматической мойки окон. Пока что полуавтономные настенные роботы более просты по конструкции и значительно надежнее в эксплуатации.

Мобильный робот, способный подниматься по лестнице

От интеллектуальных роботов будущего требуется умение выполнять заданную работу в самых различных априорно неизвестных условиях среды. Можно представить себе немало областей применения роботов, в которых возникает необходимость перемещения робота вниз и вверх по лестнице.

Нетрудно предвидеть, что попытки применения для этой цели обыкновенных колесных роботов едва ли приведут к успеху. В самом деле, даже многозвенные колесные роботы типа “Centipede” или кресло д-ра Сэкитани не справятся с подобной задачей, если ступеньки лестницы будут расположены достаточно часто.

Только в исключительных случаях – при удачном сочетании конструктивных параметров механизмов с частотой и высотой ступенек – этим роботам посчастливится забраться на лестницу. Но в целом использование любых колесных роботов для движения по лестницам представляется совершенно бесперспективным.

Устройство еще одного робота, специально ориентированного на движение по ступенькам, иллюстрируется на рис. 4.15. Этот робот разработан под руководством профессора Токийского университета д-ра Накано. Главной отличительной особенностью его является конструкция механизма перемещения, состоящего из четырех вращающихся блоков, каждый из которых образован тремя маленькими колесиками (расположенными симметрично относительно центра блока (рис. 4.15)).

С помощью такого механизма передвижения робот может достаточно уверенно спускаться и подниматься по лестницам с различными параметрами ступенек. Тем не менее границы применимости какого-либо одного конкретного конструктивного исполнения робота Накано определяются предельно допустимыми соотношениями между размерами ступенек и диаметром колес и блоков.

Интересно отметить, что в отличие от предыдущего робота с колесами-лопастями робот с трехколесными вращающимися блоками при движении по ровному полу перемещается плавно, подобно обычным колесным транспортным средствам. При этом по поверхности (полу) движутся два маленьких колеса каждого блока, а третье колесо находится в вертикальном положении над осью блока.

На рис. 4.16 показан общий вид мобильного робота “Scorpion” на гусеничном ходу. Робот разработан сотрудниками Научно-исследовательского центра по атомной энергетике в г. Карлсруэ (ФРГ). Гусеничная конструкция механизма передвижения обусловила основной способ перемещения робота в пространстве – переползание.

Гусеничный механизм состоит из четырех гусеничных опор с независимым управлением (по две опоры у передней и задней тележек). “Scorpion” преодолевает ступеньки за счет сцепления гусениц с полом. Для передней тележки величина сцепления усиливается под напором задней тележки точно так же, как это имело место в случае с роботом “Centipede”.

Для большинства мобильных роботов специального назначения, включая все рассмотренные в данной главе, изменение направления движения в процессе преодоления препятствия становится настоящей проблемой. Эта проблема оказывается неразрешимой, если разворот должен быть осуществлен в пределах очень ограниченного пространства.

“Scorpion” справляется с подобной задачей следующим образом. Если площадь для разворота (например, лестничная клетка) слишком мала, чтобы выполнить обыкновенный поворот по дуге, то пары гусениц передней и задней тележек начинают вращаться навстречу друг другу и продолжают вращаться до тех пор, пока тележки не займут вертикальное положение (рис. 4.16).

После этого за счет вращения гусениц с одной из сторон робот, подобно балерине на пуантах, поворачивается в заданном направлении, практически не двигаясь с места. Таким образом, робот может преодолевать и отдельные ступеньки, и лестницы произвольной конфигурации, а также любые другие препятствия аналогичного профиля.

“Scorpion” разработан и выпускается в качестве мобильного робота для автоматизации операций обслуживания в активной зоне атомных реакторов. Конструктивные принципы, благодаря которым “Scorpion” получил исключительно широкие возможности перемещения в среде с произвольными препятствиями, имели огромное значение для исследователей, занятых разрешением такой чрезвычайно актуальной проблемы, как создание автоматических мобильных аппаратов для обслуживания ядерных установок.

Мобильный робот, способный преодолевать препятствия типа “уступ”

Этот робот разработан фирмой Tracer (США) и получил название “Centipede” (“Сколопендра”). Он состоит из трех одинаковых секций (рис. 4.11). Каждая секция представляет собой короткую тележку с парой колес относительно большого диаметра. Тележки попарно соединены между собой гибкой сцепкой пружинного типа.

Преодоление уступа осуществляется следующим образом. Колеса передней тележки, достигнув уступа, упираются в него и продолжают вращаться. За счет силы трения колес о вертикальную стенку уступа, а также под напором второй и третьей секций первая тележка начинает приподниматься.

Так как две задние тележки могут оказывать достаточно большое давление на переднюю, то сила трения между колесами первой тележки и стенкой весьма велика и проскальзывание практически исключается. В результате первая тележка, поднимаясь все выше, достигает вершины уступа.

Взобравшись на уступ, она начинает увлекать за собой вторую, среднюю тележку. Таким образом, средняя тележка поднимается не только за счет силы трения колес о стенку, зависящей от величины давления, которое оказывает на нее последняя тележка (оно по-прежнему достаточно велико), но и за счет натяжения сцепки от первой тележки. Как только две тележки оказались наверху, они втягивают за собой последнюю, третью тележку, и уступ преодолен.

В рассматриваемом методе преодоления высоких уступов нашли применение два основных принципа, широко используемых при построении других транспортных механизмов аналогичного назначения. Один из них – это увеличение трения колес передней тележки о стенку за счет давления, прикладываемого со стороны задних тележек, расположенных на ровном участке.

Оба эти принципа, объединенные в одном устройстве, позволяют механической “Centipede” не только взбираться на уступ, но и легко справляться с другими, не менее сложными препятствиями. Например, “Centipede” без особых затруднений перебирается через поваленные рядом друг с другом стволы гигантских деревьев (рис. 4.12).

“Centipede” является дистанционно управляемым роботом. На передней тележке установлена телевизионная камера, которая передает человеку-оператору изображение поверхности почти перед роботом. Таким образом, в каждый момент времени оператор располагает информацией о том, в каких условиях работает мобильный робот, и может подсказать роботу оптимальный способ преодоления препятствий в зависимости от их формы и размера.

На рис. 4.13 показано автоматическое кресло на колесах, которое также обладает способностью преодолевать препятствие типа “уступ”. Конструкция этого кресла предложена д-ром Сэкитани. Для преодоления высоких препятствий используются те же принципы, что и в трехсекционном мобильном роботе “Centipede”, но в данном случае роль передней тележки выполняет пара подвесных колес, расположенных в передней части.

Таким образом, подобно роботу “Centipede”, кресло перемещается на шести колесах. При столкновении с уступом подвесные колеса упираются в уступ и, вращаясь, поднимают переднюю часть кресла на высоту уступа. Как и прежде, необходимая величина сцепления с поверхностью стенки достигается за счет работы четырех оставшихся колес.

Определение робота

Международный стандарт ISO 8373:2023 определяет робота как приводной механизм, программируемый по двум и более осям, имеющий некоторую степень автономности, движущийся внутри своей рабочей среды и выполняющий предназначенные ему задачи.

На наш взгляд, более полезным для понимания того, что есть робот, может быть функциональное определение (определение STA, рисунок 1): роботом можно назвать любое устройство (механизм), выполняющее предназначенные ему действия, которое одновременно отвечает трем условиям.

Рисунок 1. Определение STA
Рисунок 1. Определение STA
  • 1. SENSE: воспринимать окружающий мир с помощью сенсоров. Такими сенсорами могут быть микрофоны, камеры (всех областей электромагнитного спектра), различные электро механические сенсоры и прочее.
  • 2. THINK: понимать окружающий физический мир и строить модели поведения, для того чтобы выполнять предназначенные ему действия.
  • 3. ACT: воздействовать на физический мир, тем или иным способом.

ЕСЛИ ОДНО ИЗ ВЫШЕНАЗВАННЫХ УСЛОВИЙ НЕ ВЫПОЛНЯЕТСЯ, ТО УСТРОЙСТВО НЕ ЯВЛЯЕТСЯ РОБОТОМ.

К примеру, автономное транспортное средство можно отнести к робототехнике. Робот-автомобиль обладает сенсорами (SENSE), строит модели, понимает окружающий мир и принимает решения (THINK) и совершает необходимые действия, чтобы двигаться, выполняя свою задачу (ACT) (перевезти пассажиров или груз).

Такой робот работает в невероятно сложной, недетерминированной среде, в которой постоянно возникает громадное количество непредвиденных ситуаций. Робот-манипулятор на фабрике имеет простейший сенсор (SENSE) (одномерный лазерный дальномер), который контролирует выполнение модели операции (THINK) и производит необходимое действие (ACT), например сварку. Эти роботы-автоматы работают в строго детерминированной среде, в которой построенная модель не меняется долгое время.

С другой стороны, устройство, которое может воспринимать окружающий мир (SENSE) и действовать (ACT), но при этом не имеет никакой модели окружающего мира, можно отнести к автоматизации. Широко распространенный пример такого устройства — кофейный автомат.

Исходя из данного определения, правильнее всего называть современную, передовую робототехнику интеллектуальной.

Смотрите про коптеры:  Радиоуправляемые игрушки. Как правильно выбрать :: Товары для детей :: Для дома :: Для родителей :: Все о детях
Оцените статью
Радиокоптер.ру
Добавить комментарий