Патч-антенна, изготовление и практика — Паркфлаер

Патч-антенна, изготовление и практика —
 Паркфлаер Самолеты

Введение

Первые шесть уроков рассматривают конструкторские соображения, лежащие в основе создания специального многомоторного БПЛА/Дрона. 7 урок, не раскрывает аспектов сборки, а описывает ряд дополнительных аксессуаров/устройств, используемых для реализации полёта от первого лица (FPV) и управления на большом расстоянии.

Эта статья больше ориентирована на применение радиоуправления в «полевых условиях»; в отличие от полёта внутри помещений или в местах, где розетки могут обеспечить питание. Обратите внимание, урок охватывает только очень небольшую часть информации, необходимой для правильного понимания FPV/Систем дальнего радиуса действия, и предназначена главным образом для ознакомления читателя с понятиями, терминами, продуктами и принципами, лежащими в основе FPV и управления дроном на больших расстояниях.

Вид от первого лица (fpv)

Вид от первого лица (FPV — First Person View) — одно из основных движущих сил стремительно растущей популярности мультимоторных БЛА, позволяющая получить совершенно иную перспективу («вид с высоты птичьего полёта») нашей планеты и само ощущение полёта. Несмотря на то, что добавление камеры к БПЛА не является чем-то новым, относительная простота управления, низкая цена и широкий ассортимент дронов, позволяют легко купить или создать беспилотный летательный аппарат с камерой.

Смотрите про коптеры:  FPV комплект для новичка или бюджетный вариант для FPV полетов - YouTube

Вид от первого лица (FPV) в настоящее время реализуется посредством предустановленного на коптер тандема, состоящего из FPV камеры и видеопередатчика, что позволяет в режиме реального времени отправлять видео пилоту или ассистенту. Обратите внимание, что на рынке предлагаются готовые, либо полуготовые FPV системы, где в свою очередь, готовые FPV системы обеспечивают уверенность пользователя в том, что все её элементы совместимы друг с другом.

Патч-антенна, изготовление и практика —
 Паркфлаер

Видеокамера

  • Практически любая видеокамера, которая имеет возможность подключения к видеопередатчику, может использоваться для реализации FPV полёта, тем не менее, важно учитывать вес, так как многомоторные БЛА постоянно борются с гравитацией и не имеют преимуществ крылатого воздушного судна для обеспечения дополнительного подъёма.
  • Видеокамеры бывают самых разных форм и размеров, а также могут иметь различный потенциал в качестве съёмки, тем не менее в настоящее время далеко немногие адаптированы специально для БПЛА. Из-за этих ограничений по размеру, весу и производительности, большинство камер используемых в многомоторных FPV-системах, пришло от «экшн-камер», а также от приложений видеонаблюдения и индустрии безопасности (например, скрытые камеры).
  • Большие камеры, такие как DSLR (зеркальные) или крупные видеокамеры, обычно используются профессионалами, но из-за своего веса требуемый дрон имеет тенденцию быть довольно большим.
  • Некоторые видеокамеры могут питаться напрямую от источника питания 5В (полезно, поскольку большинство контроллеров полёта также работают при 5В, питаясь от BEC), в то время как другим может потребоваться 12В или даже своя собственная встроенная аккумуляторная батарея.
  • Самой популярной камерой, используемой в настоящее время на многомоторных БПЛА является — GoPro. Это связано с их прочностью, небольшими размерами, высоким качеством видео/фото, встроенным аккумулятором, широким ассортиментом аксессуаров и доступностью по всему миру. Камеры GoPro также имеют USB выход, который можно использовать для передачи видео, а некоторые даже имеют встроенный WiFi модуль для передачи видео на короткие расстояния.
  • Учитывая успех GoPro, многие другие производители создали свои собственные аналогичные линии спортивных/экшн-камер, но их характеристики, цена, и качество разнятся. Обратите внимание, что если вам потребуется 3D-видео, вам понадобятся две камеры и видеопередатчик, способный передавать два сигнала.
Смотрите про коптеры:  Квадрокоптер своими руками: Часть I / Хабр

Патч-антенна, изготовление и практика —
 Паркфлаер

Подвес

Система подвеса включает в себя механическую раму, два или более мотора (обычно до трёх для панорамирования, наклона и крена), а также датчики и электронику. Камера установлена таким образом, что двигатели не должны обеспечивать угловое усилие (крутящий момент), чтобы держать камеру под фиксированным углом («сбалансированным»).

Оси, о которых идёт речь, позволяют панорамировать, наклонять или поворачивать камеру. 1-осевая система, которая не имеет собственного датчика, может рассматриваться как система панорамирования или наклона. Наиболее популярная конструкция включает в себя установку двух моторов (обычно BLDC двигатели, специально разработанные для использования с подвесами), которая управляет наклоном и поворотом камеры. Следовательно камера всегда обращена в сторону передней части дрона, что также гарантирует, что пилот не будет дезориентирован, если камера будет смотреть в одном направлении, а передняя сторона беспилотника — в другом.

3-осевой подвес добавляет панорамирование (влево и вправо) и наиболее полезен в тандеме с двумя операторами, когда один человек управляет дроном, а другой может независимо управлять камерой. В такой конфигурации для двух человек также может быть задействована вторая (фиксированная) курсовая камера для пилота. Как правило, существует один из двух видов карданных систем:

Бесколлекторный подвес

  • Бесколлекторные моторы постоянного тока (BLDC — Brushless Direct Current Motor) или (PMSM — Permanent Magnet Synchronous Motor) или (Вентильные электродвигатели (ВД)) — обеспечивают быструю реакцию с минимальной вибрацией, однако требуют присутствия отдельного (и специализированного) бесколлекторного контроллера постоянного тока.
  • Чтобы автоматически поддерживать уровень камеры, где-то вокруг камеры (обычно под её креплением) устанавливается инерциальный измерительный блок (IMU), состоящий из акселерометра и гироскопа, так чтобы положение камеры (относительно земли) можно было отслеживать. Показания блока отправляются на отдельную плату бесколлекторного контроллера постоянного тока (часто устанавливаемую прямо над подвесом), который вращает моторы, так, что положение камеры остаётся в определенной ориентации, несмотря на любое перемещение дрона.
  • Сама плата контроллера включает в себя встроенный микроконтроллер. Бесколлекторный контроллер постоянного тока карданного подвеса обычно можно подключить непосредственно к каналу на приёмнике (в отличие от контроллера полёта), поскольку он реагирует на изменения ориентации камеры, а не ориентации БПЛА, и, следовательно, не зависит от контроллера полёта.
  • Обратите внимание, что поскольку GoPro является популярной экшн-камерой, большинство бесколлекторных подвесов созданы для использования с одной или несколькими моделями GoPro (исходя из размеров GoPro, центра масс, местоположения камеры и т.д.). Вы также заметите, что BLDC подвесы почти всегда имеют демпфирование, которое сводит к минимуму вибрацию, передаваемую от дрона к камере.

Патч-антенна, изготовление и практика —
 Паркфлаер

Радиоуправляемый сервоподвес

  • В основе радиоуправляемого сервоподвеса — сервопривод, как правило, предлагает более медленное время отклика, по сравнению с бесколлекторными подвесами, и излишнюю вибрацию. При этом сервосистемы значительно дешевле бесколлекторных, а 3-контактные сервоприводы в большинстве случаев могут быть подключены непосредственно к полётному контроллеру, что позволяет воспользоваться встроенным в ПК — IMU, для определения уровня относительно земли, и последующего перемещения сервоприводов.

Патч-антенна, изготовление и практика —
 Паркфлаер

Видеопередатчик (vtx)

В настоящее время немногие контроллеры полёта (за исключением готовых к работе БЛА массового потребительского рынка) имеют встроенный видеопередатчик, это означает, что обычно требуется отдельное VTX дооснащение. Видеопередатчики, используемые в беспилотном хобби, в настоящее время популярны, так как они лёгкие и маленькие. Можно использовать и другие видеопередатчики сторонних разработчиков, но, в таком случае должны учитываться некоторые важные соображения касательно подключения питания (может потребоваться настройка, если устройство принимает питание только от «Barrel» разъёма), а также входного напряжения; Если видеоустройство работает при напряжении, которого нет на борту вашей сборки, где, вам может потребоваться дополнительная электроника, например, регулятор напряжения. Видеопередатчики не затрагивающие беспилотное хобби, редко удовлетворяют по таким параметрам как вес или размер, и как правило заключены в защитный кейс (а иногда, неоправданно тяжелый).

Патч-антенна, изготовление и практика —
 Паркфлаер

Мощность видеопередатчика

Видеопередатчики обычно рассчитаны на определенную выходную мощность, но не следует полагать, что кто-либо может использовать любую номинальную мощность, доступную на рынке. Беспроводные частоты и мощность тщательно отслеживаются и регулируются, поэтому настоятельно рекомендуется ознакомиться с правилами беспроводной связи в стране где вы находитесь.

Мощность, которую потребляет видеопередатчик, напрямую влияет на максимальную дальность его сигналов. В Северной Америке для работы беспроводного передатчика, который потребляет энергию выше определенной (в Ваттах), требуется, чтобы оператор имел лицензию радиолюбителя (HAM). Например, в Канаде, FPV оператору большой дальности обычно требуется пройти, по крайней мере, «Базовый квалификационный тест радиолюбителя», чтобы работать на мощности, необходимой для беспроводных приложений большой дальности.

Если вы не имеете никакой квалификации, настоятельно рекомендуется использовать видео передатчик менее 200 мВт, чтобы избежать риска судебных исков (власти могут связаться с вами, если ваш сигнал начнет мешать другим беспроводным сигналам).

Питание для видеопередатчика обычно подается от BEC от одного из ESC, который также питает остальную часть электроники. Если вы подозреваете, что вся электроника потребляет больше тока, чем может обеспечить один BEC, вы можете использовать BEC от второго ESC для питания VTX. Использовать отдельную батарею для питания видеопередатчика не рекомендуется.

Частоты/каналы видеопередатчика

Большинство видеопередатчиков работают на одной из ниже перечисленных частот. Обратите внимание, что, поскольку вы, вероятно, уже будете использовать стандартную аппаратуру управления, которая работает на определенной частоте, правильным будет выбрать видеопередатчик так, чтобы их частоты не совпадали. Например, если ваше пульт управления работает на частоте 2.4 ГГц, вам следует обратить внимание на видеопередатчик с рабочей частотой: 900 МГц, 1.2ГГц или 5.8ГГц.

Патч-антенна, изготовление и практика —
 Паркфлаер

900мгц (0.9ггц)

  • Низкочастотный сигнал легче проникает через стены и деревья
  • DIY антенны легко сделать, потому что низкие частоты подразумевают большие антенны
  • Качество изображения не такое хорошее, как на 5.8ГГц
  • Может оказать негативное влияние на GPS приёмники
  • Считается «старой» технологией
  • В целом, лучший для среднего диапазона

2ГГц (от 1.2 до 1.3 ГГц)

  • Используется для дальних FPV полётов, поскольку предлагает хорошее расстояние
  • Много разных антенн на рынке
  • Частота, как правило, используется множеством других устройств
  • Стены и препятствия оказывают большее влияние, чем более низкая частота
  • Средний/длинный диапазон

4ГГц (от 2.3 до 2.4ГГц)

  • Используется для FPV на большие расстояния с небольшим количеством препятствий
  • Одна из наиболее широко используемых частот для беспроводных устройств
  • Доступны многие аксессуары (антенны, передатчики и т.д.)
  • Не следует использовать рядом с параллельно работающими на аналогичной частоте RC передатчиками или другими устройствами, которые могут создавать помехи.
  • Может работать с другими частотами, но не будет рассмотрено в этом разделе.

8ГГц

Как вы, могли, заметить, многие обычные беспроводные устройства работают на частоте 2.4ГГц (беспроводные маршрутизаторы, беспроводные телефоны, Bluetooth, устройства для открывания гаражных ворот и т.д.). Во многом это связано с тем, что в государственных нормативных актах Федеральной комиссии связи, определено, что полосе частот вокруг этого диапазона не требуется лицензия для работы; то же самое для 900МГц, 1.2ГГц и 5.8ГГц (в пределах определенного диапазона мощности). К без лицензионному частотному диапазону относится так называемый свободный ISM диапазон (с англ. Industrial, Scientific, Medical: индустриальный, научный и медицинский диапазон), занимает полосу частот: от 2400 до 2483.5МГц в США и Европе и от 2471 до 2497МГц в Японии. Это означает, что любой потребитель может приобрести беспроводное устройство, которое работает на одной из этих частот, не беспокоясь о правилах или рекомендациях. Более подробную информацию о любительском распределении радиочастот можно найти в Википедии.

Разъёмы видеопередатчика

Не все видеопередатчики имеют одинаковые разъёмы, поэтому важно знать, какой разъём установлен в выбранной камере, а также, посмотреть, возможно ли подключение и работа с выбранным видеопередатчиком. Самые популярные разъёмы — композитные, мини/микро USB и 0.1-дюймовые разъёмы (аналоговые). На рынке имеется ряд адаптеров/переходников, например: 0.1″ FPV Tx разъём — miniUSB для использования с камерой GoPro, что значительно упрощает использование таких продуктов.

Некоторые видеопередатчики также могут иметь аудиовход, тем не менее в большинстве случаев шум издаваемый силовой установкой будет заглушать любой звук, который вы надеетесь записать. Если вам нужен звук, обязательно расположите микрофон как можно дальше от моторов (потребуется немало испытаний, чтобы найти макс. оптимальное место) и выберите совместимый приёмник.

Антенна видеопередатчика

Антенны видеопередатчика, используемые на беспилотных летательных аппаратах, имеют тенденцию быть либо «Duck», либо «Whip». Duck антенны являются наиболее распространёнными и имеют преимущество в том, что они являются всенаправленными, компактными, недорогими и остаются неподвижными во время полёта из-за их небольшого профиля.

Выбор антенны должен соответствовать частоте видеопередатчика. Более высокие частоты требуют небольших антенн, однако передаваемые сигналы испытывают большие трудности при прохождении через препятствия. Низкие частоты менее подвержены помехам, но требуют больших/длинных антенн. Направленная антенна не очень часто используется для передачи видео, так как БПЛА может фактически находится в любой ориентации в трёхмерном пространстве. В идеале антенна должна быть расположена где-то на БПЛА, где нет источников других беспроводных сигналов или электрических помех.

Патч-антенна, изготовление и практика —
 Паркфлаер

Видеоприёмник (vrx)

Видеоприёмник имеет тенденцию быть немного (физически) больше и тяжелее, видеопередатчика, потому что приёмник как правило неподвижен (подключён к экрану), в то время как передатчик устанавливается на дроне и, как таковой, должен быть маленьким и лёгким. Чтобы сэкономить место, некоторые производители ЖК-дисплеев включают в свои дисплеи стандартно частотные беспроводные приёмники.

Многие FPV энтузиасты устанавливают на свои FPV очки антенны типа «Clover Leaf» или «Pinwheel», что позволяет им ориентировать свою голову в направлении беспилотника и тем самым добиваться максимально мощного сигнала. Некоторые производители FPV очков также поддержали эту тенденцию и стали включать в комплектацию своих очков беспроводной видеоприёмник и антенну.

Очевидно, что частота, на которой работает видеоприёмник, должна соответствовать частоте передатчика. Некоторые модели приёмников, однако, предлагают широкий выбор каналов (по одному), что делает их совместимыми с различными видеопередатчиками. Выход видеоприёмника имеет тенденцию быть либо композитным (наиболее распространённый), либо HDMI. Что подключить к выходу (видео дисплей), решать вам, и некоторые варианты описаны ниже. Питание приёмника в полевых условиях всегда предполагает использование батареи, которая либо выдает выходное напряжение соответствующее рабочему напряжению приёмника, либо батареи, которая подключена к регулятору напряжения для обеспечения требуемого. Обратите внимание, на то, что нет видеоприёмников «большой дальности», поскольку диапазон сигнала зависит от мощности передатчика и правильно выбранной антенны.

Патч-антенна, изготовление и практика —
 Паркфлаер

Антенна видеоприёмника

Антенны, используемые на видеоприёмниках, могут быть всенаправленными (способными принимать сигнал с любого направления) или направленными. Наиболее распространённые антенны, которые можно встретить на видеоприёмнике это: Duck антенна, Cloverleaf/Pinwheel или, в редких случаях, направленная (например, «Yagi»). Направленная антенна будет актуальна только в том случае, когда БПЛА будет летать в определенном направлении по отношению к оператору, а дрон всегда будет «перед» антенной, для того чтобы не потерять сигнал. Ситуации могут включать в себя исследование конкретной зоны (например, поля) или области, которая находится на расстоянии от оператора.

Патч-антенна, изготовление и практика —
 Паркфлаер

Видеодисплей

Жк монитор (lcd монитор)

  • При рассмотрении ЖК монитора важно знать различие между настольным/компьютерным ЖК монитором или ЖК телевизором и тем, который предназначен быть портативным. Телевизионный/компьютерный монитор почти всегда имеет разъём питания, совместимый со стандартным компьютерным кабелем питания (потребляет переменный ток напрямую), что делает его очень сложным для использования с АКБ. ЖК/OLED дисплей, который должен быть более портативным, зачастую потребляет постоянный ток и требует внешнего трансформатора для подключения к сети (A/C).
  • Размер, частота обновления и качество отображения дисплея, используемого для FPV применения варьируются от небольших мониторов с зернистыми изображениями, те что обновляются несколько раз в секунду, до больших дисплеев, которые в сочетании с правильным видеопередатчиком и приёмником, отображают большие HD изображения без каких либо явных задержек. Имейте в виду, что любой выбранный вами 2D-дисплей должен быть подключен к источнику питания и установлен, либо внутри базовой станции БПЛА (описанной ниже), либо посредством крепления FPV монитора на аппаратуре управления.

Патч-антенна, изготовление и практика —
 Паркфлаер

Fpv очки

  • 2D-очки широко используются в FPV из-за их более доступной цены, совместимости с одним источником видеосигнала (с одной видеокамеры) и простоты использования с внешним аккумулятором. Некоторые модели включают в себя видеоприёмник; комплекты приходят с камерой, видеопередатчиком, FPV очками (с встроенным видеоприёмником) и внешним аккумулятором, а также обеими антеннами.
  • Качество видео, предлагаемое недорогими FPV очками, может быть довольно низким, поэтому если бюджет имеет значение, примите во внимание, что вы можете получить лучшее впечатление от ЖК-монитора большего размера по той же цене, что и FPV очки.

Патч-антенна, изготовление и практика —
 Паркфлаер

Отслеживание головы

  • Отслеживание головы по существу тоже самое, что и отслеживание движения, а именно, измерение трехмерной ориентации/углов в отличие от линейного движения. Сенсорный комплекс составляют чипы MEMS акселерометра, гироскопов или инерциальных измерительных модулей (IMU). Датчики устанавливаются (или встраиваются) в FPV/VR очки и отправляют данные в микроконтроллер для интерпретации данных датчика в виде углов, который затем отправляет данные, либо посредством аппаратуры управления (для моделей более высокого уровня), либо через отдельное беспроводное передающее устройство. Идеальная система отслеживания головы совместима с передатчиком, таким образом углы могут быть отправлены с помощью передатчика по двум свободным RC каналам.

Патч-антенна, изготовление и практика —
 Паркфлаер

3d/виртуальная реальность

  • Occulus Rift, Samsung Gear, Morpheus, VR-очки на базе смартфона и множество других 3D/VR-дисплеев с головным креплением могут быть адаптированы для использования с беспилотниками. Несмотря на то, что эти устройства обычно создаются для трёхмерных компьютерных/консольных игр или в качестве альтернативы телевизору, эти устройства изначально совместимы с 3D и зачастую имеют встроенные датчики трекинга головы, становясь всё более интересными для беспилотного FPV сообщества.

Патч-антенна, изготовление и практика —
 Паркфлаер

Smart устройства

  • Смартфоны, планшеты или ноутбуки могут быть использованы для отображения видео в режиме реального времени. Их батареи являются встроенными, а сами устройства лёгкие. Сложность использования интеллектуальных устройств заключается в том, что большинство приёмников не предназначены для приёма видеосигнала от беспроводного видеоприёмника (один из двух проводной или беспроводной). Ноутбук или планшет с встроенной или USB-видеокартой может получать нормальное композитное видео. Смартфон в настоящее время лучше всего работает с видео, отправляемым по Wi-Fi (от Wi-Fi камеры к Wi-Fi адаптеру). Использование Wi-Fi видеосигнала GoPro и мобильного приложения является одним из самых простых способов реализации FPV, однако стоит отметить, что диапазон сигнала Wi-Fi камеры сильно ограничен (10-20 метров). Поскольку смартфоны широко распространены, а беспилотники — последний писк моды, производители регулярно выпускают новые продукты, из которых извлекают выгоду, поэтому прежде чем принять решение, хорошенько подумайте.

Патч-антенна, изготовление и практика —
 Паркфлаер

Экранное меню (osd)

  • Экранное меню (OSD) позволяет пилоту видеть различные сенсорные данные, отправляемые с дрона. Одним из самых простых способов выведения данных на экран является использование камеры с аналоговым выходом и размещение экранной платы между выходом камеры и видеопередатчиком. Плата OSD адаптера имеет входы для различных сенсоров и будет накладывать данные на видео, таким образом пилот получит видео с уже наложенными данными телеметрии.

Патч-антенна, изготовление и практика —
 Паркфлаер

Соображения касательно расстояния удаления

  • Как вы уже успели заметить, работа на большом расстоянии зависит главным образом от мощности передатчика (аппаратуры управления, а также видео, если применимо). Обычно RC-передатчики включают в себя RF-систему, состоящую из джойстиков и переключателей, электроники и RF-передатчика, и менее дорогих RC-элементов, эта система почти всегда представляет собой единое целое. Модели более высокого уровня часто имеют радиочастотный модуль, который можно заметить в виде коробки, расположенной на тыльной стороне аппаратуры управления. В Северной Америке это также законное требование, чтобы БПЛА оставался в поле зрения пилота (для информации). Тем не менее законы меняются, поэтому лучше проконсультироваться, прежде чем пытаться выполнять беспилотные операции на больших расстояниях.

Питание

Бпла/дрон

Ваш БПЛА/Дрон состоит из множества различных частей, каждая из которых требует определенного напряжения. Наиболее распространенная электроника, которую вы найдете в FPV системе или дроне дальнего действия, включает в себя:

  1. Двигатели: большинство двигателей БПЛА среднего размера, как правило, работают при напряжении 11.1В или 14.8В.
  2. Контроллер полёта, приёмник, GPS: в идеале они должны получать питание от BEC от одного из ESC.
  3. Приёмник отслеживающий положение головы: он будет также работать от BEC.
  4. Сервоподвес: Сервоприводная система подвеса может получать питание от одного из BEC на ESC и работать при напряжении 5В.
  5. BLDC подвес: Некоторые BLDC подвесы могут подключаться к зарядному разъёму основного аккумулятора, в то время как другим может потребоваться определенное напряжение. Проверьте характеристики подвеса, который вы покупаете.
  6. Камера: Камеры, используемые для FPV полёта, имеют тенденцию работать при 5В (от BEC) или 12В (от основного аккумулятора). Большинство экшн-камер имеют собственную встроенную батарею.
  7. Видеопередатчик: Большинство работает при 5В и может питаться от BEC.
  8. Дополнительная электроника (освещение, парашют и т.д.): 5В.

Рекомендуется чтобы в БПЛА была только одна основная батарея, и вам следует рассмотреть возможность использования АКБ 11.1В или 14.8В на дроне среднего размера. Если не один ESC не имеет BEC, вам понадобится внешний 5В стабилизатор напряжения для питания электроники, и убедитесь, что он сможет обеспечить достаточный ток для всего.

Пилот

В то время как обычному пользователю беспилотника нужно беспокоиться только о работоспособности аппаратуры управления, пилот полноценной FPV установки может в конечном итоге переносить большие АКБ, и разнообразное дополнительное оборудование.

  1. Портативная аппаратура управления: Большинство пультов по умолчанию питаются от батареи типа «AA» (4 × AA или 8 × AA), но для FPV может потребоваться питание аппаратуры от внешнего АКБ.
  2. Дополнительный RF-передатчик: Если вы не используете RF-передатчик/Приёмник, входящий в комплект поставки пульта дистанционного управления, модели более высокого уровня обычно имеют питающий выход, к которому можно подключить этот модуль. Кроме того, вы можете запитать его к внешней аккумуляторной батареи, питающей пульт дистанционного управления.
  3. Приёмник отслеживающий положение головы: Обычно это блок может питаться от 5В.
  4. Видеоприёмник: Большинству требуется 12В, но часто они имеют довольно широкий диапазон входного напряжения. Чаще всего приёмник поставляется с сетевым адаптером, который вы не будете использовать в полевых условиях. Проверьте диапазоны входного напряжения, чтобы увидеть, можете ли вы использовать одно напряжение для питания передатчика и приёмника (например, 7.4В или 12В).
  5. Видеодисплей: Обязательно выберите портативный ЖК-дисплей с «Barrel» разъёмом, что позволит использовать батарейный блок для ввода. FPV очки, как правило, также имеют вход под «Barrel» разъём, но не забудьте проверить. Наиболее распространенное напряжение для портативных ЖК-дисплеев составляет 12В, что может быть не самым лучшим для других устройств.
  6. Антенный трекер: Описан ниже. Это моторизованное устройство часто состоит из радиоуправляемых серводвигателей, микроконтроллера и дополнительных сенсоров /электроники. Существует очень мало коммерческих систем для рынка беспилотного хобби, поэтому если вы будете заниматься проектированием и созданием такой системы, вам нужно будет разработать настройку питания.

Базовая станция

Как уже было сказано выше, есть много оборудования, которое пилоту необходимо переносить и питать, и что оно может быть очень громоздким. Базовые станции часто используются для освобождения оператора от этого бремени/неразберихи и могут состоять из любого количества различного оборудования и отсеков, перечисленных ниже. Не трудно представить, что от того, как хорошо собрана базовая станция, проведены жгуты проводов, соединяющих все эти устройства вместе, зависит исход подготовки к полёту.

Патч-антенна, изготовление и практика —
 Паркфлаер

Базовая станция может включать в себя:

  • Основную батарею, возможно, используемую для питания ЖК-монитора и/или FPV очков и, возможно, видеоприёмника.
  • Вспомогательную батарею для передатчика и/или видеоприёмника.
  • Крепление для ЖК-монитора и/или место для FPV очков.
  • Крепление для видеоприёмника.
  • Место для хранения аппаратуры управления.
  • Крепление для антенны большой дальности (или место для переносной направленной антенны)
  • Место для зарядного устройства для основного аккумулятора (ов).
  • Место для запасных частей для дрона (пропеллеры, моторы, аккумуляторы, элементы рамы).

«Базовая станция» не обязательно является коммерчески произведенным продуктом, который легко может быть использован с любым беспилотным применением, напротив, она может быть спроектирована и построена пилотом-любителем самостоятельно. Обычно создание базовой станции начинается с выбора прочного футляра для переноски (например, Pelican или Nanuk), хотя также можно использовать/адаптировать рюкзак с жесткой рамой. Часто для установки антенны повыше от земли используется штатив.

Антенный трекер

Антенный трекер — это электромеханическое устройство, которое отслеживает положение дрона в трёхмерном пространстве, используя GPS координаты, и, зная местоположение GPS трекера, направляет антенну в сторону беспилотника. Антенные трекеры обычно используются в дальнобойных миссиях, и на рынке не так много коммерческих продуктов. Трекер состоит из GPS приёмника, компаса (а иногда и IMU), микроконтроллера, приёмника данных (для приёма GPS-координат дрона), одного поворотного и одного наклонного мотора, механической рамы, направленной антенны и аккумуляторной батареи. Чтобы уменьшить отрицательное влияние препятствий, системы антенного трекера поднимаются над землей с помощью штатива.

Патч-антенна, изготовление и практика —
 Паркфлаер

Базовая станция

Как уже было сказано выше, есть много оборудования, которое пилоту необходимо переносить и питать, и что оно может быть очень громоздким. Базовые станции часто используются для освобождения оператора от этого бремени/неразберихи и могут состоять из любого количества различного оборудования и отсеков, перечисленных ниже.

Базовая станция может включать в себя:

  • Основную батарею, возможно, используемую для питания ЖК-монитора и/или FPV очков и, возможно, видеоприёмника.
  • Вспомогательную батарею для передатчика и/или видеоприёмника.
  • Крепление для ЖК-монитора и/или место для FPV очков.
  • Крепление для видеоприёмника.
  • Место для хранения аппаратуры управления.
  • Крепление для антенны большой дальности (или место для переносной направленной антенны)
  • Место для зарядного устройства для основного аккумулятора (ов).
  • Место для запасных частей для дрона (пропеллеры, моторы, аккумуляторы, элементы рамы).

«Базовая станция» не обязательно является коммерчески произведенным продуктом, который легко может быть использован с любым беспилотным применением, напротив, она может быть спроектирована и построена пилотом-любителем самостоятельно. Обычно создание базовой станции начинается с выбора прочного футляра для переноски (например, Pelican или Nanuk), хотя также можно использовать/адаптировать рюкзак с жесткой рамой. Часто для установки антенны повыше от земли используется штатив.

Бесколлекторный подвес

  • Бесколлекторные моторы постоянного тока (BLDC — Brushless Direct Current Motor) или (PMSM — Permanent Magnet Synchronous Motor) или (Вентильные электродвигатели (ВД)) — обеспечивают быструю реакцию с минимальной вибрацией, однако требуют присутствия отдельного (и специализированного) бесколлекторного контроллера постоянного тока.
  • Чтобы автоматически поддерживать уровень камеры, где-то вокруг камеры (обычно под её креплением) устанавливается инерциальный измерительный блок (IMU), состоящий из акселерометра и гироскопа, так чтобы положение камеры (относительно земли) можно было отслеживать. Показания блока отправляются на отдельную плату бесколлекторного контроллера постоянного тока (часто устанавливаемую прямо над подвесом), который вращает моторы, так, что положение камеры остаётся в определенной ориентации, несмотря на любое перемещение дрона.
  • Сама плата контроллера включает в себя встроенный микроконтроллер. Бесколлекторный контроллер постоянного тока карданного подвеса обычно можно подключить непосредственно к каналу на приёмнике (в отличие от контроллера полёта), поскольку он реагирует на изменения ориентации камеры, а не ориентации БПЛА, и, следовательно, не зависит от контроллера полёта.
  • Обратите внимание, что поскольку GoPro является популярной экшн-камерой, большинство бесколлекторных подвесов созданы для использования с одной или несколькими моделями GoPro (исходя из размеров GoPro, центра масс, местоположения камеры и т.д.). Вы также заметите, что BLDC подвесы почти всегда имеют демпфирование, которое сводит к минимуму вибрацию, передаваемую от дрона к камере.

Бпла/дрон

Ваш БПЛА/Дрон состоит из множества различных частей, каждая из которых требует определенного напряжения. Наиболее распространенная электроника, которую вы найдете в FPV системе или дроне дальнего действия, включает в себя:

  1. Двигатели: большинство двигателей БПЛА среднего размера, как правило, работают при напряжении 11.1В или 14.8В.
  2. Контроллер полёта, приёмник, GPS: в идеале они должны получать питание от BEC от одного из ESC.
  3. Приёмник отслеживающий положение головы: он будет также работать от BEC.
  4. Сервоподвес: Сервоприводная система подвеса может получать питание от одного из BEC на ESC и работать при напряжении 5В.
  5. BLDC подвес: Некоторые BLDC подвесы могут подключаться к зарядному разъёму основного аккумулятора, в то время как другим может потребоваться определенное напряжение. Проверьте характеристики подвеса, который вы покупаете.
  6. Камера: Камеры, используемые для FPV полёта, имеют тенденцию работать при 5В (от BEC) или 12В (от основного аккумулятора). Большинство экшн-камер имеют собственную встроенную батарею.
  7. Видеопередатчик: Большинство работает при 5В и может питаться от BEC.
  8. Дополнительная электроника (освещение, парашют и т.д.): 5В.

Рекомендуется чтобы в БПЛА была только одна основная батарея, и вам следует рассмотреть возможность использования АКБ 11.1В или 14.8В на дроне среднего размера. Если не один ESC не имеет BEC, вам понадобится внешний 5В стабилизатор напряжения для питания электроники, и убедитесь, что он сможет обеспечить достаточный ток для всего.

Видеокамера

  • Практически любая видеокамера, которая имеет возможность подключения к видеопередатчику, может использоваться для реализации FPV полёта, тем не менее, важно учитывать вес, так как многомоторные БЛА постоянно борются с гравитацией и не имеют преимуществ крылатого воздушного судна для обеспечения дополнительного подъёма.
  • Видеокамеры бывают самых разных форм и размеров, а также могут иметь различный потенциал в качестве съёмки, тем не менее в настоящее время далеко немногие адаптированы специально для БПЛА. Из-за этих ограничений по размеру, весу и производительности, большинство камер используемых в многомоторных FPV-системах, пришло от «экшн-камер», а также от приложений видеонаблюдения и индустрии безопасности (например, скрытые камеры).
  • Большие камеры, такие как DSLR (зеркальные) или крупные видеокамеры, обычно используются профессионалами, но из-за своего веса требуемый дрон имеет тенденцию быть довольно большим.
  • Некоторые видеокамеры могут питаться напрямую от источника питания 5В (полезно, поскольку большинство контроллеров полёта также работают при 5В, питаясь от BEC), в то время как другим может потребоваться 12В или даже своя собственная встроенная аккумуляторная батарея.
  • Самой популярной камерой, используемой в настоящее время на многомоторных БПЛА является — GoPro. Это связано с их прочностью, небольшими размерами, высоким качеством видео/фото, встроенным аккумулятором, широким ассортиментом аксессуаров и доступностью по всему миру. Камеры GoPro также имеют USB выход, который можно использовать для передачи видео, а некоторые даже имеют встроенный WiFi модуль для передачи видео на короткие расстояния.
  • Учитывая успех GoPro, многие другие производители создали свои собственные аналогичные линии спортивных/экшн-камер, но их характеристики, цена, и качество разнятся. Обратите внимание, что если вам потребуется 3D-видео, вам понадобятся две камеры и видеопередатчик, способный передавать два сигнала.

Видеоприёмник (vrx)

Видеоприёмник имеет тенденцию быть немного (физически) больше и тяжелее, видеопередатчика, потому что приёмник как правило неподвижен (подключён к экрану), в то время как передатчик устанавливается на дроне и, как таковой, должен быть маленьким и лёгким.

Многие FPV энтузиасты устанавливают на свои FPV очки антенны типа «Clover Leaf» или «Pinwheel», что позволяет им ориентировать свою голову в направлении беспилотника и тем самым добиваться максимально мощного сигнала. Некоторые производители FPV очков также поддержали эту тенденцию и стали включать в комплектацию своих очков беспроводной видеоприёмник и антенну.

Очевидно, что частота, на которой работает видеоприёмник, должна соответствовать частоте передатчика. Некоторые модели приёмников, однако, предлагают широкий выбор каналов (по одному), что делает их совместимыми с различными видеопередатчиками. Выход видеоприёмника имеет тенденцию быть либо композитным (наиболее распространённый), либо HDMI.

Что подключить к выходу (видео дисплей), решать вам, и некоторые варианты описаны ниже. Питание приёмника в полевых условиях всегда предполагает использование батареи, которая либо выдает выходное напряжение соответствующее рабочему напряжению приёмника, либо батареи, которая подключена к регулятору напряжения для обеспечения требуемого.

Патч антенна на 5.8 ггц своими руками – страница 2 – сделай сам

Да ничего не получл. :D  Пусть сначала сделает, а мы померяем :rolleyes:  А на фото самый обыкновенный лазерный гравер средней точности.

Эмм простите что на ты, буду теперь всем выкать :D  особенно иностранцам. Куда нам, мы же не великие…

Ладно ладно, мы тоже не великие можно и на ты, но в нормальном контексте. А то сказочником обзывают. Я делал линейку для института метрологии с ценой деления 10 микрон. Получилась с 3 го раза, не учел колебания температур. Но потом все получилось, так что точность там достаточная. Аппарат вышел в 65к зелени, это не гравер средней точности, а очень универсальная махина с 3,5 метровой рамой и весом 4т. Делалась под заказ по ТЗ.

§

Внесу “5 копеек” по поводу панельных антенн на 5.8 ГГц от китайцев (те самые, которые стоят около 10$, для которых заявляют усиление 11 дБи). Вот ее внешний вид:

panel1.JPG

Вот внутренности :)

panel2.jpg

Корпус неразборный, пришлось применить небольшую силу – очень интересно что там у нее внутри.

Обратите внимание на латунный лепесток, к которому припаяна центральная жила кабеля. При повороте антенны вокруг своей оси, а потом еще на 90 градусов, этот лепесток сам прижимается к экрану и.. антенна перестает работать :)

panel3.jpg

Хотя я сомневаюсь, что эта антенна вообще работает – ну т.е. как гвоздь она работает точно, не хуже наверно чем тот патч, изготовленный по ЛУТ.

Подложил под лепесток кусочек диэлектрика от коаксиала, чтобы он не коротил на экран – вроде стала излучать. Но вот самодельный “билуп” излучает гораздо веселее по показаниям индикатора поля и лампочкотестера.

Сообщение отредактировал pento: 17 Апрель 2020 – 09:02

Патч-антенна, изготовление и практика

Антенна имеет направленную диаграмму, поэтому её нужно ориентировать на модель!

Патч-антенна, изготовление и практика —
 Паркфлаер

В инете есть множество методик по расчёту патча, но я решил идти другим путём. Очень не плохо отзываются любители FPV на форуме  http://fpv-community.ru о антенне L-COM производства США

Патч-антенна, изготовление и практика —
 Паркфлаер

там же, приводятся данные этой антенны
http://fpv-community.ru/topic/121-izgotavlivaem-patch-antennu-svoimi-rukami/page-4#entry2602

Высота активной части 114.25мм
Ширина 123.15мм
Расстояние между пластинами 15.2мм
Точка запитки 10мм от края!!!

Заявленные характеристики:Gain 8 dBiFrequency 1080-1200MHz*Horizontal Beam Width 75 degreesVertical Beam Width 65 degreesImpedance 50 OhmMax. Input Power 25 WattsVSWR < 1.5:1 avg.*

ребята с rcgroups.com описали как указанную антенну доработать до 1280 Mhz

для этого нужно аккуратно подрезать ширину активного элемента до 110mm(с обоих сторон, если это покупная антенна), высоту активного элемента до 98.5mm (сверху, если это покупная антенна)

http://www.rcgroups.com/forums/showpost.php?p=16641731&postcount=1300

Патч-антенна, изготовление и практика —
 Паркфлаер

можно просто купить 1280MHz L-COM Patch Antenna Upgrade Kit

Патч-антенна, изготовление и практика —
 Паркфлаер

но это не наш метод! 🙂

Я решил попробовать для начала сделать именно такой вариант.

Антенна представляет из себя две пластины токопроводящего материала, меди, бронзы, оцинкованной стали… делают такие антенны из крышек корпусов системных блоков, из листовой стали, даже из вёдер 🙂
Я буду делать из фольгированного текстолита.

Главное в конструкции это размеры! Нужно как можно точнее выдерживать всё до десятой доли миллиметра! Это же касается и “точки запитки”

Не буду описывать процесс расчёта, я хотел тупо повторить L-COM

в итоге взял два листа текстолита, вырезал по указанным размерам

Патч-антенна, изготовление и практика —
 Паркфлаер

между листами установил 4 пластиковых столбика(должны быть не токопроводящими), скрутил пластиковыми винтами.

Патч-антенна, изготовление и практика —
 Паркфлаер

В точке запитки просверлил отверстия, в нижнем листе чуть побольше, чтобы вошёл весь кабель с оплёткой, в верхнем листе только под центральную жилу. Листы нужно собирать “медью” друг к другу, чтобы точно выдержать расстояние между пластинами. (точка запитки может быть как сверху так и снизу, антенна ориентируется в пространстве точкой запитки или вниз или вверх, по другому нельзя!)

Центральную жилу припаиваем к верхнему листу, экран к нижнему.

Патч-антенна, изготовление и практика —
 Паркфлаер

Антенна готова!

мой скромный результат

Патч-антенна, изготовление и практика —
 Паркфлаер

Дальше не полетел не из за предела приёма, просто пока опыта мало 🙂

Как обычно отвечу на всё вопросы, ваш Plohish

все мои статьи: http://www.radiocopter.ru/55187/blogs/user_feed/55187/

§

Антенна имеет направленную диаграмму, поэтому её нужно ориентировать на модель!

Патч-антенна, изготовление и практика —
 Паркфлаер

В инете есть множество методик по расчёту патча, но я решил идти другим путём. Очень не плохо отзываются любители FPV на форуме  http://fpv-community.ru о антенне L-COM производства США

Патч-антенна, изготовление и практика —
 Паркфлаер

там же, приводятся данные этой антенны
http://fpv-community.ru/topic/121-izgotavlivaem-patch-antennu-svoimi-rukami/page-4#entry2602

Высота активной части 114.25мм
Ширина 123.15мм
Расстояние между пластинами 15.2мм
Точка запитки 10мм от края!!!

Заявленные характеристики:Gain 8 dBiFrequency 1080-1200MHz*Horizontal Beam Width 75 degreesVertical Beam Width 65 degreesImpedance 50 OhmMax. Input Power 25 WattsVSWR < 1.5:1 avg.*

ребята с rcgroups.com описали как указанную антенну доработать до 1280 Mhz

для этого нужно аккуратно подрезать ширину активного элемента до 110mm(с обоих сторон, если это покупная антенна), высоту активного элемента до 98.5mm (сверху, если это покупная антенна)

http://www.rcgroups.com/forums/showpost.php?p=16641731&postcount=1300

Патч-антенна, изготовление и практика —
 Паркфлаер

можно просто купить 1280MHz L-COM Patch Antenna Upgrade Kit

Патч-антенна, изготовление и практика —
 Паркфлаер

но это не наш метод! 🙂

Я решил попробовать для начала сделать именно такой вариант.

Антенна представляет из себя две пластины токопроводящего материала, меди, бронзы, оцинкованной стали… делают такие антенны из крышек корпусов системных блоков, из листовой стали, даже из вёдер 🙂
Я буду делать из фольгированного текстолита.

Главное в конструкции это размеры! Нужно как можно точнее выдерживать всё до десятой доли миллиметра! Это же касается и “точки запитки”

Не буду описывать процесс расчёта, я хотел тупо повторить L-COM

в итоге взял два листа текстолита, вырезал по указанным размерам

Патч-антенна, изготовление и практика —
 Паркфлаер

между листами установил 4 пластиковых столбика(должны быть не токопроводящими), скрутил пластиковыми винтами.

Патч-антенна, изготовление и практика —
 Паркфлаер

В точке запитки просверлил отверстия, в нижнем листе чуть побольше, чтобы вошёл весь кабель с оплёткой, в верхнем листе только под центральную жилу. Листы нужно собирать “медью” друг к другу, чтобы точно выдержать расстояние между пластинами. (точка запитки может быть как сверху так и снизу, антенна ориентируется в пространстве точкой запитки или вниз или вверх, по другому нельзя!)

Центральную жилу припаиваем к верхнему листу, экран к нижнему.

Патч-антенна, изготовление и практика —
 Паркфлаер

Антенна готова!

мой скромный результат

Патч-антенна, изготовление и практика —
 Паркфлаер

Дальше не полетел не из за предела приёма, просто пока опыта мало 🙂

Как обычно отвечу на всё вопросы, ваш Plohish

все мои статьи: http://www.radiocopter.ru/55187/blogs/user_feed/55187/

§

Антенна имеет направленную диаграмму, поэтому её нужно ориентировать на модель!

Патч-антенна, изготовление и практика —
 Паркфлаер

В инете есть множество методик по расчёту патча, но я решил идти другим путём. Очень не плохо отзываются любители FPV на форуме  http://fpv-community.ru о антенне L-COM производства США

Патч-антенна, изготовление и практика —
 Паркфлаер

там же, приводятся данные этой антенны
http://fpv-community.ru/topic/121-izgotavlivaem-patch-antennu-svoimi-rukami/page-4#entry2602

Высота активной части 114.25мм
Ширина 123.15мм
Расстояние между пластинами 15.2мм
Точка запитки 10мм от края!!!

Заявленные характеристики:Gain 8 dBiFrequency 1080-1200MHz*Horizontal Beam Width 75 degreesVertical Beam Width 65 degreesImpedance 50 OhmMax. Input Power 25 WattsVSWR < 1.5:1 avg.*

ребята с rcgroups.com описали как указанную антенну доработать до 1280 Mhz

для этого нужно аккуратно подрезать ширину активного элемента до 110mm(с обоих сторон, если это покупная антенна), высоту активного элемента до 98.5mm (сверху, если это покупная антенна)

http://www.rcgroups.com/forums/showpost.php?p=16641731&postcount=1300

Патч-антенна, изготовление и практика —
 Паркфлаер

можно просто купить 1280MHz L-COM Patch Antenna Upgrade Kit

Патч-антенна, изготовление и практика —
 Паркфлаер

но это не наш метод! 🙂

Я решил попробовать для начала сделать именно такой вариант.

Антенна представляет из себя две пластины токопроводящего материала, меди, бронзы, оцинкованной стали… делают такие антенны из крышек корпусов системных блоков, из листовой стали, даже из вёдер 🙂
Я буду делать из фольгированного текстолита.

Главное в конструкции это размеры! Нужно как можно точнее выдерживать всё до десятой доли миллиметра! Это же касается и “точки запитки”

Не буду описывать процесс расчёта, я хотел тупо повторить L-COM

в итоге взял два листа текстолита, вырезал по указанным размерам

Патч-антенна, изготовление и практика —
 Паркфлаер

между листами установил 4 пластиковых столбика(должны быть не токопроводящими), скрутил пластиковыми винтами.

Патч-антенна, изготовление и практика —
 Паркфлаер

В точке запитки просверлил отверстия, в нижнем листе чуть побольше, чтобы вошёл весь кабель с оплёткой, в верхнем листе только под центральную жилу. Листы нужно собирать “медью” друг к другу, чтобы точно выдержать расстояние между пластинами. (точка запитки может быть как сверху так и снизу, антенна ориентируется в пространстве точкой запитки или вниз или вверх, по другому нельзя!)

Центральную жилу припаиваем к верхнему листу, экран к нижнему.

Патч-антенна, изготовление и практика —
 Паркфлаер

Антенна готова!

мой скромный результат

Патч-антенна, изготовление и практика —
 Паркфлаер

Дальше не полетел не из за предела приёма, просто пока опыта мало 🙂

Как обычно отвечу на всё вопросы, ваш Plohish

все мои статьи: http://www.radiocopter.ru/55187/blogs/user_feed/55187/

Пилот

В то время как обычному пользователю беспилотника нужно беспокоиться только о работоспособности аппаратуры управления, пилот полноценной FPV установки может в конечном итоге переносить большие АКБ, и разнообразное дополнительное оборудование.

  1. Портативная аппаратура управления: Большинство пультов по умолчанию питаются от батареи типа «AA» (4 × AA или 8 × AA), но для FPV может потребоваться питание аппаратуры от внешнего АКБ.
  2. Дополнительный RF-передатчик: Если вы не используете RF-передатчик/Приёмник, входящий в комплект поставки пульта дистанционного управления, модели более высокого уровня обычно имеют питающий выход, к которому можно подключить этот модуль. Кроме того, вы можете запитать его к внешней аккумуляторной батареи, питающей пульт дистанционного управления.
  3. Приёмник отслеживающий положение головы: Обычно это блок может питаться от 5В.
  4. Видеоприёмник: Большинству требуется 12В, но часто они имеют довольно широкий диапазон входного напряжения. Чаще всего приёмник поставляется с сетевым адаптером, который вы не будете использовать в полевых условиях. Проверьте диапазоны входного напряжения, чтобы увидеть, можете ли вы использовать одно напряжение для питания передатчика и приёмника (например, 7.4В или 12В).
  5. Видеодисплей: Обязательно выберите портативный ЖК-дисплей с «Barrel» разъёмом, что позволит использовать батарейный блок для ввода. FPV очки, как правило, также имеют вход под «Barrel» разъём, но не забудьте проверить. Наиболее распространенное напряжение для портативных ЖК-дисплеев составляет 12В, что может быть не самым лучшим для других устройств.
  6. Антенный трекер: Описан ниже. Это моторизованное устройство часто состоит из радиоуправляемых серводвигателей, микроконтроллера и дополнительных сенсоров /электроники. Существует очень мало коммерческих систем для рынка беспилотного хобби, поэтому если вы будете заниматься проектированием и созданием такой системы, вам нужно будет разработать настройку питания.

Самостоятельное изготовление антенны типа &quot;клевер&quot;

В данной статье рассматривается изготовление антенн с круговой направленностью получивших название “клевер”. Смысл изготовления состоит в том, чтобы длина проволоки была равна длине волны частоты, для которой мы хотим построить антенну, с маленьким фактором исправления из-за эффекта покраски и эпоксидной смолы.

Highslide JS

Для диапазона 2.4ГГц, размеры, чтобы получать антенну, сориентированную на 2440МГц, с полосой частот более, чем достаточной, чтобы покрыть все каналы этой группы, с 2370 до 2510MHz, должны быть следующими:

Длина центрального провода = 3mm

Длина проволоки = 122,8mm

Длинная сторона (длина прямого отрезка длина центрального провода) = 35,2mm

Короткая сторона (длина прямого отрезка) = 32,2mm

Угол дуги = 90 °

Угол наклона = 50 °

Для диапазона 1.3GHz, с центральной частотой 1280МГц, размеры должны быть следующими:

Длина центрального провода = 3mm

Длина проволоки = 236,8mm

Длинная сторона (длина прямого отрезка длина центрального провода) = 67,2mm

Короткая сторона (длина прямого отрезка) = 64,2mm

Угол дуги = 90 °

Угол наклона = 50 °

Размеры для частоты 5740МГц, один из каналов очков Fat Shark:

Длина центрального провода = 2mm

Длина проволоки = 50,9mm

Длинная сторона (длина прямого провода длина центрального провода) = 14,8mm

Короткая сторона (длина прямого провода) = 12,8mm

Угол дуги = 90 °

Угол наклона = 50 °

Это внешний вид антенн, на 1.3ГГц (слева) и 2.4ГГц (справа), для того, чтобы вы представляли размеры:

Highslide JS

Приступаем к изготовлению антенны:

1. Берём пластиковую трубку диаметром 5мм, нагреваем сверло диаметром 4.5мм строительным феном и расширяем пластиковую трубку с одной стороны.

Highslide JS

2. Затем отрезаем лишнее и у нас уже есть укрепление для антенны.

Highslide JS

3. Зачищаем конец коаксиального кабеля для того, чтобы припаять это к SMA разъёму.

Highslide JS

4. Облуживаем.

Highslide JS

5. Припаиваем к разъёму.

Highslide JS

6. Зачищаем и облуживаем другой конец коаксиального кабеля, где мы будем припаивать антенну.

Highslide JS

7. Одеваем пластиковую трубку.

Highslide JS

8. Одеваем термоусадочную трубку со стороны разъёма и усаживаем её. Одеваем второй отрезок термоусадочной трубки и оставляем её не усаживая.

Highslide JS

9. Отрезаем 4 отрезка проволоки (стальная проволока покрытая медью, диаметром 0,8мм) требуемой длины. Отрезки должны быть прямыми, одинаковой длины. Для измерения длины лучше воспользоваться штангельциркулем.

Highslide JS

10. Загибаем с двух сторон проволоку. Одна сторона должна быть длиньше, другая короче.

Highslide JS

11. Изгибаем под угом 90 °.

Highslide JS

12. Облуживаем концы проволоки с обеих сторон.

Highslide JS

13. Используя приведённое на фото крепление, припаиваем провода с длинной стороной к экрану коаксиального кабеля.

Highslide JS

14. Должны получить такой результат.

Highslide JS

15. Используя приведённое на фото крепление, припаиваем провода с короткой стороной к центральному проводу коаксиального кабеля.

Highslide JS

16. Подробно.

Highslide JS

17. Результат.

Highslide JS

18. Хороший способ убедиться, что мы всё сделали правильно, установить антенну вертикально проводами вниз. Антенна должна стоять ровно, не качаясь.

a href=”http://www.radiocopter.ru/foto/clever/clever-19.jpg” class=”highslide” onclick=”return hs.expand(this)”>

Highslide JS

19. Уже почти готово …

Highslide JS

20. Усиливаем пайку эпоксидной смолой.

Highslide JS

21. Красим краской из баллончика.

ИСПОЛЬЗОВАТЬ КРАСКУ БЕЗ СВИНЦА.

Highslide JS

22. Усаживаем термоусадку на место.

Highslide JS

Всё, антенна готова!

Оцените статью
Радиокоптер.ру
Добавить комментарий