Переделываем радиоуправляемые машинки своими руками

Переделываем радиоуправляемые машинки своими руками Конструкторы

Аналоговые и компьютерные передатчики

Чтобы понять разницу между аналоговыми и компьютерными передатчиками, обратимся к более жизненному примеру. Лет пятнадцать назад начали распространяться программируемые телефоны. От обычного они отличались тем, что помимо разговора и определения номера звонящего абонента, позволяли запрограммировать на одну кнопку набор целого номера, или составить “черный список” абонентов, на звонки которых телефон не реагировал.

Появилась куча дополнительных сервисов, которые простому абоненту часто были не нужны. Так вот, аналоговый передатчик – это как простой телефон. В нем обычно не более 6 каналов. Как правило, реализованы простейшие из описанных выше сервисов: имеется реверс каналов (иногда не всех), триммирование и регулировка чувствительности (обычно, на первые 4 канала), установка крайних значений канала газа (холостого хода и максимальных оборотов).

Компьютерная аппаратура характеризуется тем, что все настройки в них можно запрограммировать при помощи кнопок и дисплея так же, как на программируемых телефонах. Сервисов здесь может быть море. Из основных стоит отметить следующие:

  1. Наличие памяти на несколько моделей. Очень удобная вещь. Можно запомнить все настройки микшеров, реверсов и расходов, чтобы не перестраивать передатчик, когда вы решите его использовать с другой моделью.
  2. Запоминание значений триммеров. Весьма удобная функция. Вы можете не беспокоится, что при транспортировке триммеры случайно собьются, и вам придется вспоминать их положение. Перед запуском модели достаточно будет всего лишь проверить, что триммеры установлены “по центру”.
  3. Большое количество встроенных микшеров и переключателей режимов работы позволит реализовать самые разнообразные функции на сложных моделях.
  4. Наличие дисплея заметно облегчает настройку аппаратуры.

По количеству функций и цене компьютерная аппаратура варьируется в довольно широких пределах. Конкретные возможности лучше всегда смотреть на сайте производителя или в инструкции.

Самые дешевые аппараты могут идти с минимумом функций, и ориентированы в первую очередь на удобство эксплуатации. Это в первую очередь память моделей, цифровые триммеры и пара микшеров.

Боле сложные передатчики, как правило, отличаются количеством функций, расширенным дисплеем и дополнительными режимами кодирования данных (для защиты от помех и повышения скорости передачи информации).

Топовые модели компьютерных передатчиков имеют графические дисплеи большой площади, в некоторых случаях даже с сенсорным управлением:

Такие модели имеет смысл покупать ради удобства пользования или ради каких-то особенно хитрых функций (которые могут понадобится, только если вы захотите серьезно заниматься спортом). Навороченность приводит к тому, что топовые модели уже конкурируют между собой не по числу функций, а по удобству программирования.

Многие компьютерные передатчики имеют сменные модули памяти настроек моделей, которые позволяют расширить встроенную память, а также легко переносить настройки модели с одного передатчика на другой. Ряд моделей предусматривают смену программы управления, путем замены специальной платы внутри передатчика.

Надо отметить, что гибкость в использовании компьютерной аппаратуры имеет и отрицательные черты. Один из авторов подарил недавно теще программируемый телефон, так она с его программированием повозилась с недельку и вернула с просьбой купить ей простой, как она говорит “нормальный телефон”.

Другие важные факторы, которые следует учесть

Любая автомодель может испытывать недостаточную или избыточную поворачиваемость в зависимости от дорожных условий, скорости, доступного сцепления и действий водителя. Конструкция автомодели, однако, имеет тенденцию к индивидуальному “предельному” условию, когда автомодель достигает и превосходит пределы сцепления.

“Предельная недостаточная поворачиваемость” относится к автомодели, которая благодаря конструктивным особенностям стремится к недостаточной поворачиваемости, когда угловые ускорения превосходят сцепление шин.Предельный баланс управляемости является функцией переднего/заднего относительного сопротивления крену (жесткость подвески), переднего/заднего распределения веса и переднего/заднего сцепления шин.

Автомодель с тяжелой передней частью и низким задним сопротивлением крену (из-за мягких пружин и/или малой жесткости, или отсутствия задних стабилизаторов поперечной устойчивости) будет обладать тенденцией к предельной недостаточной поворачиваемости: ее передние шины, будучи более тяжело нагружены даже в статическом состоянии, будут достигать пределов своего сцепления раньше, чем задние шины, и таким образом будут развивать большие углы бокового увода.

Автомодели с передним приводом также подвержены недостаточной поворачиваемости, так как они обычно не только обладают тяжелой передней частью, но и подача мощности на передние колеса также снижает их сцепление доступное для поворота. Это часто приводит к эффекту “дрожания” на передних колесах, так как сцепление неожиданно изменяется вследствие передачи мощности от двигателя на дорогу и управления.

Хотя недостаточная и избыточная поворачиваемости обе могут вызывать потерю контроля, многие производители разрабатывают свои автомодели для предельной недостаточной поворачиваемости в предположении, что для среднего водителя это легче контролировать, чем предельную избыточную поворачиваемость.

В отличие от предельной избыточной поворачиваемости, которая часто требует нескольких корректировок управления, недостаточная поворачиваемость часто может быть снижена с помощью понижения скорости.Недостаточная поворачиваемость может проявляться не только во время ускорения в повороте, она также может проявиться во время резкого торможения.

Если баланс тормозов (усилие торможения на передней и задней оси) слишком смещен вперед, это может вызвать недостаточную поворачиваемость. Это вызывается блокированием передних колес и потерей эффективного управления. Может иметь место и противоположный эффект, если баланс тормозов слишком смещен назад, то задний конец автомодели заносит.

Спортсмены, на асфальтовых поверхностях, в основном предпочитают нейтральный баланс (с небольшой тенденцией в сторону недостаточной или избыточной поворачиваемости, в зависимости от трассы и стиля вождения), так как недостаточная и избыточная поворачиваемость приводят к потерям скорости во время прохождения поворотов.

Избыточная поворачиваемость (oversteer)

Автомодель обладает избыточной поворачиваемостью, когда задние колеса не следуют позади передних колес, а вместо этого скользят в сторону внешней стороны поворота. Избыточная поворачиваемость может привести к заносу.На тенденцию автомодели к избыточной поворачиваемости влияет несколько факторов, таких как механическое сцепление, аэродинамика, подвеска и стиль вождения.

Предел избыточной поворачиваемости наступает, когда задние шины превышают предел своего бокового сцепления во время поворота перед тем, как это происходит с передними шинами, таким образом вызывая ситуацию, когда задняя часть автомодели направлена в сторону внешней стороны поворота.

В общем смысле избыточная поворачиваемость является условием, когда угол бокового увода задних шин превосходит угол бокового увода передних шин.Автомодели с задним приводом более подвержены избыточной поворачиваемости, в особенности при использовании газа в тесных поворотах.

Это происходит потому, что задние шины должны выдерживать боковые силы и тягу двигателя.Тенденция автомодели к избыточной поворачиваемости обычно увеличивается при смягчении передней подвески или ужесточении задней подвески (или при добавлении заднего стабилизатора поперечной устойчивости).

Как вы различаете избыточную и недостаточную поворачиваемость?
Когда вы входите в поворот, избыточная поворачиваемость – это когда автомодель поворачивает круче, чем вы ожидаете, а недостаточная поворачиваемость – это когда автомодель поворачивает меньше, чем вы ожидаете.

Обладать избыточной или недостаточной поворачиваемость, вот в чем вопрос
Как упоминалось ранее, любые регулировки являются предметом компромисса. Автомодель обладает ограниченным сцеплением, которое может быть распределено между передними и задними колесами (это может быть расширено с помощью аэродинамики, но это уже другая история).

Все спортивные автомодели развивают более высокую боковую (т.е. боковое скольжение) скорость, чем это определяется направлением, в которое указывают колеса. Различие между кругом, по которому катятся колеса, и направлением, в которое они указывают, является углом бокового увода (slip angle).

Если углы бокового увода передних и задних колес являются одинаковыми, автомодель обладает нейтральным балансом управляемости. Если угол бокового увода передних колес превосходит угол бокового увода задних колес, говорят, что автомодель обладает недостаточной поворачиваемостью.

Если угол бокового увода задних колес превосходит угол бокового увода передних колес, говорят, что автомодель обладает избыточной поворачиваемостью.Просто запомните, что автомодель с недостаточной поворачиваемостью сталкивается с ограждением передней частью, автомодель с избыточной поворачиваемостью сталкивается с ограждением задней частью, а автомодель с нейтральной управляемостью касается ограждения обоими концами одновременно.

Количество каналов и раскладка ручек управления

Для управления движущимися моделями требуется воздействие одновременно на несколько функций. Поэтому передатчики радиоуправления делают многоканальными. Рассмотрим количество и предназначение каналов.

Для авто и судомоделей нужно два канала: управление направлением движения и оборотами двигателя. Навороченные пистолетные передатчики имеют еще и третий канал, который может использоваться для управления смесеобразованием ДВС (радиоигла).

Для управления простейшими летающими моделями тоже могут использоваться два канала: рули высоты и элероны у планеров и самолетов, или руль высоты и направления. Для дельтапланов используют управление по крену и мощностью мотора. Также эта схема применяется и на некоторых простейших планерах – руль поворота и включение двигателя.

Такие двухканальные передатчики можно использовать для парковых моделей и электролетов начального уровня. Однако для полноценного управления самолетом нужно не менее четырех, а вертолетом – пяти каналов. Для самолетов на два двухкоординатных джойстика выводятся функции управления рулем высоты, направления, элеронами и газом двигателя.

Конкретная раскладка функций по джойстикам бывает двух типов: Mode 1 – руль высоты слева по вертикали и руль направления по горизонтали, газ справа по вертикали и крен по горизонтали; Mode 2 – газ слева по вертикали и руль направления по горизонтали, руль высоты справа по вертикали и крен по горизонтали. Есть еще Mode 3 и 4, но они мало распространены.

Mode 1 еще называют двуруким вариантом, а Mode 2 – одноруким. Эти названия следуют из того, что в последнем варианте можно довольно долго управлять самолетом одной рукой, держа в другой банку пива. Споры моделистов о преимуществах той или иной схем не стихают много лет.

Смотрите про коптеры:  Что можно сделать из моторчика от игрушки или бытовой техники: вертолёты, машинки и домашние станки

Для эффективного управления вертолетом нужно уже пять каналов (не считая канала управления чувствительностью гироскопа). Здесь имеет место совмещение двух функций на одно направление джойстика (как это происходит, мы рассмотрим позднее). Раскладки ручек во многом аналогичны самолетным.

Выше рассматривалось минимально необходимое число каналов для управления движением моделей. Но функций управления моделями может быть очень много. Особенно на моделях копиях. На самолетах это может быть управление уборкой шасси, закрылками и другой механизацией крыла, бортовыми огнями, тормозами колес шасси.

Еще больше функций у моделей-копий кораблей, имитирующих различные механизмы реальных судов. На планерах используют управление флаперонами и воздушными тормозами (интерцепторами), убираемыми шасси и другие функции. На вертолетах используют еще управление чувствительностью гироскопа, убираемым шасси и другими дополнительными функциями.

Здесь надо отметить, что каналы управления бывают двух типов – пропорциональные и дискретные. Проще всего пояснить это на автомобиле: газ – это пропорциональный канал, а свет фар – дискретный. Сейчас дискретные каналы используются только для управления вспомогательными функциями: включение фар, выпуск шасси.

Все основные функции управления идут по пропорциональным каналам. При этом величина отклонения руля на модели пропорциональна величине отклонения джойстика на передатчике. Так вот, в модульных передатчиках есть возможность расширения числа как пропорциональных, так и дискретных каналов. Как это делается технически, мы рассмотрим позднее.

С многоканальностью связана одна принципиальная эргономическая проблема. У человека всего две руки, которые могут управлять одновременно только четырьмя функциями. На настоящих самолетах еще используют ноги пилотов (педали). Моделисты еще к этому не пришли.

Поэтому управление остальными каналами осуществляется от отдельных тумблеров у дискретных каналов или ручек – у пропорциональных, либо эти вспомогательные функции получают путем вычисления из основных. Кроме того, сигналы управления моделью также могут не прямо управляться от джойстиков, а проходить предварительную обработку.

Конструктивные разновидности передатчиков

По конструкции органов управления, на которые, собственно, воздействуют пальцы пилота, передатчики делятся на джойстиковые и пистолетного типа. В первых установлено, как правило, два двухкоординатных джойстика. Такие передатчики используются для управления летающими моделями.

В джойстиковых передатчиках ручка имеет встроенные пружины, которые возвращают ее после отпускания в нейтральное положение. Как правило, одно из направлений какого-то джойстика используется для управления тяговым мотором, – в нем нет возвратной пружины.

При этом ручка поджата трещеткой (для самолетов) или гладкой тормозящей пластиной (для вертолетов). С помощью таких передатчиков можно успешно управлять также плавающими и ездящими моделями, однако для них придуманы специальные передатчики пистолетного типа. Здесь рулевое колесо управляет направлением движения модели, а курок – ее двигателем и тормозами.

В последние годы появились передатчики с одним двухкоординатным джойстиком. Они относятся к категории дешевых аппаратов и могут использоваться для управления как упрощенной летающей, так и наземной техники. Продуктивно их можно использовать только на самом начальном уровне. Аналогичное назначение и у передатчиков с двумя однокоординатными джойстиками:

Чтобы закончить с конструктивными разновидностями добавим еще разделение джойстиковых передатчиков на моноблочные и модульные. Если первые полностью укомплектованы всеми компонентами и сразу готовы к применению, то модульные представляют из себя основу, в которую пилот по своему усмотрению добавляет нужные ему дополнительные органы управления:

Существует две манеры удержания передатчика. Пультовые передатчики вешаются на шею пилота с помощью специального ремня или столика-подставки. Руки пилота опираются на корпус передатчика, а каждый джойстик управляется двумя пальцами – указательным и большим.

Ручной передатчик можно тоже держать в руках и управлять им по-европейски. Можно также использовать его и в пультовом варианте, если к нему купить специальный столик-подставку. Столик не хуже фирменного можно сделать самому . Такие столики требуются и для некоторых пультовых передатчиков.

Модульное расширение

Модульные передатчики выпускают преимущественно в пультовом исполнении. В этом случае на панели пульта много места, где можно разместить дополнительные ручки, тумблеры и другие органы управления. Из других случаев упомянем о модуле для управления двухмоторным катером, либо танком.

Теперь объясним, как происходит уплотнение каналов при модульном расширении их числа. Разными производителями выпускаются модули, позволяющие по одному основному каналу передавать до 8 пропорциональных, либо дискретных дополнительных каналов.

При этом в передатчик устанавливается модуль кодера с восемью ручками или тумблерами, занимающий один из основных каналов, а к приемнику в гнездо этого канала включается декодер, имеющий восемь пропорциональных либо дискретных выходов. Принцип уплотнения сводится к последовательной передаче через данный основной канал по одному дополнительному в каждом 20-ти миллисекундном цикле.

То есть, информация обо всех восьми дополнительных каналах с передатчика на приемник попадет только через восемь циклов сигнала – за 0,16 секунды. По каждому разуплотненному каналу декодер выдает выходной сигнал как и по обычному – один раз в 0,02 секунды, повторяя одно и тоже значение восемь раз.

Отсюда видно, что уплотненные каналы обладают намного меньшим быстродействием и их нецелесообразно задействовать для управления быстрыми и важными функциями управления модели. Таким способом можно создавать и 30-канальные комплекты аппаратуры. Для чего это надо? В качестве примера приведем перечень функций модуля освещения и сигнализации модели-копии магистрального тягача:

  • Габаритные огни
  • Дальний свет
  • Ближний свет
  • Фара-искатель
  • Стоп-сигнал
  • Включение заднего хода (две последние функции срабатывают автоматически от положения управления газом)
  • Левый поворот
  • Правый поворот
  • Освещение кабины
  • Клаксон
  • Проблесковый маячок

Модульные передатчики чаще используют копиисты, для которых важнее зрелищность поведения модели, реалистичность того, как она выглядит, а не ее динамика поведения. Для модульных передатчиков выпускается большое количество разнообразных модулей целевого назначения.

Упомянем здесь лишь блок триммирования элеронов пилотажных моделей. В отличие от моноблочных передатчиков, где параметры управления в режимах “флаперонов”, воздушного тормоза – (по нашему “крокодил”, а на западе “баттерфляй”) и дифференциального отклонения программируются в меню, здесь каждый параметр выведен на свою ручку.

На какие характеристики нужно обратить внимание при выборе

Несмотря на то, что в любом модельном магазине вы сможете выбрать как простую, бюджетную аппаратуру, так и очень многофункциональную, дорогостоящую, профессиональную, общими параметрами, на которые стоит обратить внимание, будут:

  • Частота
  • Каналы аппаратуры
  • Дальность действия

Связь между пультом для машины на радиоуправлении и приемником обеспечивается с помощью радиоволн, и главный показатель в данном случае – несущая частота. В последнее время моделисты активно переходят на передатчики с частотой 2.4 ГГц, так как она практически не уязвима перед помехами.

Это позволяет в одном месте собирать большое количество радиоуправляемых авто и запускать их одновременно, в то время, как аппаратура с частотой 27 МГц или 40 МГц негативно реагирует на присутствие посторонних устройств. Радиосигналы могут перехлестываться и перебивать друг друга, из-за чего контроль над моделью пропадает.

Если вы решили купить пульт управления на радиоуправляемую машинку, вы наверняка обратите внимание на указание в описании количества каналов (2-канальный, 3CH и т.д.) Речь идет о каналах управления, каждый из которых отвечает за одно из действий модели.

Переделываем радиоуправляемые машинки своими руками

Этот вопрос интересен многим новичкам. Достаточная дальность действия, чтобы вы могли комфортно себя чувствовать в просторном зале или на пересеченной местности – 100-150 метров, дальше машинка теряется из виду. Мощности современных передатчиков хватает, чтобы передавать команды на расстояние 200-300 метров.

Примером качественного, бюджетного пульта для машины на радиоуправлении является . Это 3-канальная система, работающая в диапазоне 2.4ГГц. Третий канал дает больше возможностей для творчества моделиста и расширяет функциональные возможности авто, например, позволяет управлять светом фар или поворотниками. В памяти передатчика можно запрограммировать и сохранить настройки для 10 различных моделей авто!

Недостаточная поворачиваемость (understeer)

Недостаточная поворачиваемость – условие управляемости автомодели в повороте, при котором круговой путь движения автомодели имеет заметно больший диаметр, чем у круга, обозначенного направлением колес. Этот эффект противоположен избыточной поворачиваемости (oversteer) и в простых словах недостаточная поворачиваемость является условием, в котором передние колеса не следуют по траектории, заданной водителем для прохождения поворота, а вместо этого следуют по более прямолинейной траектории.

Это еще часто называют выталкиванием или отказом поворачивать. Автомодель называют “зажатой”, так как она стабильна и далека от тенденции к заносу.Так же как с избыточной поворачиваемостью, недостаточная поворачиваемость имеет множество источников, таких как механическое сцепление, аэродинамика и подвеска.

Традиционно, недостаточная поворачиваемость имеет место, когда передние колеса имеют недостаточное сцепление во время поворота, таким образом передняя часть автомодели имеет меньшее механическое сцепление и не может следовать по траектории в повороте.

Углы развала, дорожный просвет и центр тяжести являются важными факторами, которые определяют условие недостаточной/избыточной поворачиваемости.Является общим правилом, что производители сознательно настраивают автомодели для наличия небольшой недостаточной поворачиваемости.

Как отрегулировать вашу автомодель для снижения недостаточной поворачиваемости
Вы должны начать с увеличения отрицательного развала передних колес (никогда не превышайте угол в -3 градуса для дорожных автомоделей и 5-6 градусов для внедорожных автомоделей).

Другим способом снижения недостаточной поворачиваемости является снижение отрицательного развала задних колес (он всегда должен быть <=0 градусов).Еще одним способом уменьшения недостаточной поворачиваемости является снижение жесткости или удаление переднего стабилизатора поперечной устойчивости (или увеличение жесткости заднего стабилизатора поперечной устойчивости).

Обработка управляющих сигналов и микширование

По прочтении предыдущих глав надеемся, вы смогли разобраться в двух главных моментах:

  • передатчик можно держать по-разному, но главное – чтобы его не выронить
  • в передатчиках бывает много каналов, а управляться надо всегда только при помощи двух рук, что порой бывает не очень просто
Смотрите про коптеры:  Инструкция для квадрокоптера с камерой Syma X5SW.

Теперь, когда есть предварительное понимание, рассмотрим еще несколько практических моментов, которые реализуют передатчики:

  • триммирование
  • регулирование чувствительности ручек
  • реверс каналов
  • ограничение расходов рулевых машинок
  • микширование
  • другие функции

Триммирование – очень важная вещь. Если управляя моделью вы отпустите ручки передатчика, то пружины вернут их в нейтральное положение. Вполне логично ожидать, что модель при этом станет перемещаться прямо. Однако на практике это не всегда так. Причин тому много.

Например, если вы запускаете только что построенный самолет, то вы можете неправильно учесть вращательный момент от двигателя, да и вообще модель редко бывает идеально симметричной и правильной формы. В результате – даже если рули стоят с виду ровно, модель все равно полетит не прямо, а как-то иначе.

Чтобы исправить ситуацию, положение рулей надо будет подкорректировать. Но вполне понятно, что делать это прямо на модели во время запусков очень непрактично. Гораздо проще было бы чуть сдвинуть ручки передатчика в нужных направлениях. Именно для этого и придумали триммеры!

Это такие маленькие дополнительные рычажки по бокам джойстиков, которые задают их смещение. Теперь, если надо подкорректировать нейтральное положение рулей на модели, достаточно всего лишь воспользоваться нужным триммером. Причем, что особенно ценно, триммирование можно проводить прямо на ходу, во время запусков, наблюдая за реакцией модели. Если вы обнаружите, что изначально модель в триммировании не нуждается – считайте что вам крупно повезло.

Регулирование чувствительности ручки – вполне понятная функция. Когда вы настраиваете управление под конкретную модель, вам надо установить такую чувствительность, чтобы управление было для вас наиболее комфортным. В противном случае, модель будет реагировать на ручки передатчика слишком резко или, напротив, слишком вяло.

Если мы теперь мысленно перенесемся на модель, то мы обнаружим, что в зависимости от того, как установлены рулевые машинки и как подсоединены тяги, нам может потребоваться изменить их направление работы. Для этого все передатчики позволяют независимо реверсировать каналы управления.

Сама механика модели может иметь ограничения, поэтому иногда требуется ограничивать ход рулевых машинок. Для этого многие передатчики имеют отдельную функцию ограничения хода, хотя при ее отсутствии можно попытаться обойтись регулировкой чувствительности ручек.

Теперь пора коснуться более сложных моментов и рассказать вам, что такое микширование.

Иногда может потребоваться, чтобы рулевая машинка на модели управлялась одновременно от нескольких ручек передатчика. Хорошим примером может служить летающее крыло, где оба элерона управляют высотой и креном модели, т.е. движение каждого зависит от перемещения на передатчике ручки высоты и ручки крена. Такие элероны называют элевонами:

Когда мы управляем высотой, оба элевона отклоняются одновременно вверх или вниз, а когда управляем креном – элевоны работают в противофазе.

Сигналы элевонов считаются как полусумма и полуразность сигналов высоты и крена:

Элевон1 = (высота крен) / 2
Элевон2 = (высота – крен) / 2

Т.е. сигналы от двух каналов управления смешиваются и передаются после этого на два канала исполнения. Такие вычисления, где задействуются данные с нескольких ручек управления, называются микшированием.

Микширование может быть реализовано как в передатчике, так и на модели. А сама реализация может быть как электронной, так и механической.

Специально для новичков (за исключением вертолетчиков) хочется отметить, что модели, с которых вы будете начинать, скорее всего не потребуют для своей работы микшеров. Более того, возможно, что наличие микшеров не потребуется вам очень долго (а может они вам и вообще никогда не понадобятся).

В хороших передатчиках верхнего ценового диапазона вы найдете массу других функций. Степень их нужности для той или иной модели – вопрос дискуссионный. Чтобы составить себе представление о них, можно почитать описание таких передатчиков на сайтах производителей.

Переделываем радиоуправляемые машинки своими руками

Досталась мне от племянника вот такая машинка радиоуправляемая игрушка. Радиус действия всего около 15 метров, слабая электронная часть, т.е. еле ворочаются передние колёса и очень слабо тянет привод.

Переделываем радиоуп…

От нечего делать решил не много прокачать данную радиоуправляемую машинку. Порывшись в закромах нашёл приемник 40МГц и две сервы, одну HS-311 в рабочем состоянии и одну мощную цифровую MG946R со сгоревшим двигателем. HS-311 приспособил на руль в замен родной, хиленькой конструкции, а MG946R взял только электронную плату управления. За место двигателя сервы подключил тяговый двигатель радиоуправляемой машинки, а в место переменника сервы припаял подстроечный резистор 4,7кОм.

Переделанная радиоуправляемая игрушка при первом включении передатчика начинает крутить колёсами, что бы их остановить:

  • Сервомашинку газа подключить во 2 канал (канал РВ)
  • Настроить если надо реверс канала
  • Подстроечным резистором остановить вращение колёс

радиоуправляемые маш…

Переделываем радиоуп…

радиоуправляемые маш…

радиоуправляемые маш…

Дальше отстраиваем экспоненты (на газ ставим 100%), расходы и триммируем руль. Для питания я использовал 5 банок NICD аккумуляторов, переделанная радиоуправляемая машинка получилась мощная и юркая. Не обошлось и без проблем, родной тяговый двигатель оказался слабоватым он сильно греется и воняет, думаю не долго жить ему придётся. А в общем переделка удалась, теперь машинка ездит из под пульта Eclipse7 .

Позже:

Поменял двигатель, взял с другой радиоуправляемой игрушки, дури стало не мерно! Машинка на дыбы встает, при весе около кило! При чём шины на дисках не много проскальзывают и при такой мощности получился типа псевдо-дифференциал, забавно выглядит. Племяннику машинку назад не отдам.

Самое интересное, что в дешёвых китайских игрушках в двигателе стоят щетки, а сервах для моделирования ставят просто лепестки, не пойму политики)))

Принципы формирования радиосигнала

Сейчас мы отойдем от проблем моделизма и рассмотрим вопросы радиотехники, а именно, как информация от передатчика попадает на приемник. Тем, кто не очень понимает, что такое радиосигнал, эту главу можно пропустить, обратив внимание лишь на приведенные в конце важные рекомендации.

Итак, основы модельной радиотехники. Для того, чтобы излучаемый передатчиком радиосигнал мог переносить полезную информацию, он подвергается модуляции. То есть управляющий сигнал изменяет параметры несущей радиочастоты. На практике нашли применение управление амплитудой и частотой несущей, обозначаемые буквами АМ (Amplitude Modulation)

и FM (Frequency Modulation). В радиоуправлении используется только дискретная двухуровневая модуляция. В варианте АМ несущая имеет либо максимальный, либо нулевой уровень. В варианте FM излучается сигнал постоянной амплитуды, либо с частотой F, либо с чуть смещенной частотой F df.

Сигнал FM передатчика напоминает сумму двух сигналов двух АМ передатчиков, работающих в противофазе на частотах F и F df соответственно. Из этого можно понять даже не углубляясь в тонкости обработки радиосигнала в приемнике, что в одинаковых помеховых условиях FМ сигнал имеет принципиально большую помехозащищенность, чем АМ сигнал.

АМ аппаратура, как правило, дешевле, однако разница не очень велика. В настоящее время использование АМ аппаратуры оправдано только для тех случаев, когда расстояние до модели относительно невелико. Как правило, это справедливо для автомоделей, судомоделей и комнатных авиамоделей.

Модуляция, как мы установили, позволяет наложить на излучаемую несущую полезную информацию. Однако в радиоуправлении используется только многоканальная передача информации. Для этого все каналы уплотняются в один посредством кодирования. Сейчас для этого используется только широтно-импульсная модуляция, обозначаемая буквами РРМ (Pulse Phase Modulation) и импульсно-кодовая модуляция, обозначаемая буквами РСМ (Pulse Code Modulation).

Из-за того, что для обозначения кодирования в многоканальном радиоуправлении и для наложения информации на несущую используется слово “модуляция”, часто путают эти понятия. Теперь то вам должно стать понятно, что это “две большие разницы”, как любят говорить в Одессе.

Рассмотрим типовой РРМ сигнал пятиканальной аппаратуры:

РРМ сигнал имеет фиксированную длину периода Т=20мс. Это означает, что информация о положениях ручек управления на передатчике попадает на модель 50 раз в секунду, что определяет быстродействие аппаратуры управления. Как правило, этого хватает, поскольку скорость реакции пилота на поведение модели намного меньше.

Диапазон изменения величины временного промежутка при движении джойстика из одного крайнего положения в другое определен от 1 до 2мс. Значение 1,5 мс соответствует среднему (нейтральному) положению джойстика (ручки управления). Продолжительность межканального импульса составляет около 0,3 мс.

Данная структура РРМ сигнала является стандартной для всех производителей RC-аппаратуры. Значения среднего положения ручки у разных производителей может немного отличаться: 1,52 мс – у Futaba , 1,5мс – у Hitec и , 1,6 – у Multiplex . Диапазон изменения у некоторых видов компьютерных передатчиков может быть шире, и достигать от 0,8 мс до 2,2 мс.

Как альтернатива РРМ-кодированию лет 15 назад было разработано РСМ-кодирование. К сожалению, различные производители RC-аппаратуры не смогли договориться о едином формате РСМ-сигнала, и каждый производитель придумал свой. Подробнее о конкретных форматах РСМ-сигналов аппаратуры разных фирм рассказано в статье “PPM или PCM? “.

Несколько слов про обозначения режимов модуляции. Комбинации из двух видов модуляции несущей и двух способов кодирования рождают три варианта режимов аппаратуры. Три потому, что амплитудная модуляция совместно с импульсно-кодовой не используется, – нет смысла.

Первая обладает слишком плохой помехозащищенностью, что является главным смыслом применения импульсно-кодовой модуляции. Эти три комбинации часто обозначают так: АМ, FM и PCM. Понятно, что в АМ – амплитудная модуляция и РРМ-кодирование, в FM – частотная модуляция и РРМ-кодирование, ну а в РСМ – частотная модуляция и РСМ-кодирование.

Итак, вы теперь знаете, что:

  • использование АМ аппаратуры оправдано только для автомоделей, судомоделей и комнатных авиамоделей.
  • летать с использованием AM-аппаратуры можно лишь с большой опаской и вдали от промышленных центров.
  • можно использовать компоненты аппаратуры от разных производителей, работающих в режиме РРМ кодирования.
  • в режиме РСМ можно использовать совместно только приемники и передатчики одного производителя.
Смотрите про коптеры:  Виды камер наружного IP-видеонаблюдения

Революционеры в мире радиоуправления – лучшие пульты для вашей машины

Применение систем телеметрии стали настоящей революцией в мире радиоуправляемых авто! Моделисту больше не нужно теряться в догадках о том, какую скорость развивает модель, какое напряжение у бортового аккумулятора, сколько топлива осталось в баке, до какой температуры прогрелся двигатель, сколько оборотов он совершает и т.д.

Миниатюрные датчики позволяют в режиме реального времени мониторить состояние вашего авто. Необходимые данные могут выводиться на дисплей пульта дистанционного управления или на монитор ПК. Согласитесь, очень удобно всегда быть в курсе «внутреннего» состояния авто. Такая система легко интегрируется и просто настраивается.

Переделываем радиоуправляемые машинки своими руками

В интернет-магазине Planeta Hobby вы без проблем подберете оборудование для управления моделей, сможете купить пульт управления на радиоуправляемую машинку и другую необходимую электронику: , и т.д. Делайте свой выбор правильно! Если не можете определиться самостоятельно, обращайтесь, с радостью поможем!

Дистанционное управление подвижными моделями основано на взаимодействии человека и модели. Пилот видит положение модели в пространстве и ее скорость. При помощи аппаратуры дистанционного управления он отдает команды на исполнительные устройства модели, которые поворачивают рули или управляют двигателями, тем самым пилот изменяет положение и направление движения модели в соответствии со своим желанием.

Передача команд от пилота к модели происходит в большинстве своем по радиоканалу. Исключение можно встретить лишь для комнатных моделей, где наряду с радио используется инфракрасное излучение, а также очень редко для управления подводными аппаратами используется ультразвук.

Аппаратура радиоуправления состоит из передатчика, который находится у пилота, и размещенных на модели приемника и исполнительных механизмов. Данная статья поможет получить представление о том, как работает передатчик и какой передатчик нужен вам.

Устройство передатчика

Передатчик аппаратуры радиоуправления состоит из корпуса, органов управления (джойстики, ручки, тумблеры и т.п.) платы кодера, ВЧ-модуля, антенны и батареи аккумуляторов. Кроме того, в компьютерном передатчике есть дисплей и кнопки программирования. Пояснения по корпусу и органам управления давались выше.

На плате кодера собрана вся низкочастотная схема передатчика. Кодер последовательно опрашивает положение органов управления (джойстиков, ручек, тумблеров и т.п.) и в соответствии с ним формирует канальные импульсы РРМ (или РСМ) сигнала. Здесь же вычисляются все микширования и другие сервисы (экспонента, ограничение хода и т.п.). С кодера сигнал попадает на ВЧ-модуль и тренерский разъем (если он есть).

ВЧ-модуль содержит высокочастотную часть передатчика. Здесь собран задающий кварцевый генератор, определяющий частоту канала, частотный либо амплитудный модулятор, усилитель-выходной каскад передатчика, цепи согласования с антенной и фильтрации внеполосных излучений.

В этом случае сменный кварц отсутствует, а несущая радиосигнала формируется специальным синтезатором частоты. Частота (канал), на которой будет работать передатчик, задается при помощи переключателей на ВЧ-блоке. Некоторые топовые модели предатчиков умеют устанавливать частоту синтезатора прямо из меню программирования.

Практически на всех передатчиках радиоуправления используется телескопическая антенна. В развернутом виде она достаточно эффективна, а в свернутом – компактна. В отдельных случаях допускается заменять штатную антенну на укороченную спиральную, производимую многими фирмами, либо самодельную.

Она намного удобнее в пользовании и более живуча в условиях суеты соревнований. Однако, в силу законов радиофизики, ее эффективность всегда ниже, чем у штатной телескопической, и ее не рекомендуется использовать для летающих моделей в сложной помеховой обстановке крупных городов.

Во время использования телескопическая антенна обязательно должна быть вытянута на полную длину, иначе дальность и надежность связи резко падают. Со сложенной антенной перед полетами (заездами) проверяют надежность радиоканала, – на расстоянии до 25-30 метров аппаратура должна работать.

Складывание антенны обычно не повреждает работающий передатчик. В практике имелись единичные случаи выхода ВЧ-модуля из строя при складывании антенны. По-видимому, они были обусловлены некачественными комплектующими и с такой же вероятностью могли случиться вне зависимости от складывания антенны.

В большинстве даже простых передатчиков предусмотрена функция “тренер-ученик”, позволяющая проводить обучение начинающего пилота более опытным. Для этого два передатчика соединяются кабелем между собой через специальный “тренерский” разъем. Включается передатчик тренера в режим излучения радиосигнала.

Передатчик ученика радиосигнал не излучает, а РРМ-сигнал с его кодера передается по кабелю на передатчик тренера. На последнем имеется переключатель “тренер – ученик”. В положении “тренер” на модель передается сигнал о положении ручек тренерского передатчика.

В положении “ученик” – с передатчика ученика. Поскольку переключатель находится в руках тренера, тот в любой момент перехватывает управление моделью на себя и тем самым подстраховывает новичка, не давая ему “сделать дрова”. Так ведется обучение пилотированию летающих моделей.

На тренерский разъем выведен выход кодера, вход переключателя “тренер-ученик”, земля, и контакты управления питанием кодера и ВЧ-модуля. В некоторых моделях при подключении кабеля включается питание кодера при выключенном питании передатчика. В других при закорачивании управляющего контакта на землю выключается ВЧ-модуль при включенном питании передатчика.

Питание передатчиков стандартизовано, и осуществляется от батареи никель-кадмиевых (или NiMH) аккумуляторов с номинальным напряжением 9,6 вольт, т.е. от восьми банок. Отсек под аккумулятор в разных передатчиках имеет разный размер, а значит, готовая батарея от одного передатчика может не подойти к другому по габаритам.

В простейших передатчиках могут использоваться обычные одноразовые батарейки. Для регулярного использования это разорительно.

Топовые модели передатчиков могут иметь дополнительные узлы, полезные моделисту. Multiplex например, в свою 4000 модель встраивает панорамный сканирующий приемник, позволяющий перед полетами посмотреть наличие излучений в диапазоне частот. Некоторые передатчики имеют встроенный (с выносным датчиком) тахометр.

Есть варианты тренерского кабеля, выполненного на основе оптоволокна, что гальванически развязывает передатчики и не создает помех. Есть даже средства беспроводного связывания тренера с учеником. На многих компьютерных передатчиках имеются сменные модули памяти, где хранится информация о настройках моделей. Они позволяют расширить набор запрограммированных моделей и переносить их с передатчика на передатчик.

Итак, теперь вы знаете, что:

  • путем замены кварцев, можно менять канал аппаратуры в пределах рабочего диапазона
  • путем замены сменного ВЧ-модуля легко перейти с одного диапазона на другой.
  • ВЧ-модули рассчитаны на работу только с одним видом модуляции: амплитудной либо частотной.
  • во время использования телескопическая антенна обязательно должна быть вытянута на полную длину, иначе дальность и надежность связи резко падают.
  • складывание антенны не повреждает работающий передатчик.

Центр крена (roll center)

Центр крена автомодели является воображаемой точкой, отмечающей центр, вокруг которого происходит крен автомодели (в поворотах), если смотреть спереди (или сзади).Положение геометрического центра крена диктуется исключительно геометрией подвески.

Официальное определение центра крена звучит так: “Точка на поперечном сечении через любую пару центров колес, в которой боковые силы могут быть применены к подпружиненной массе без создания крена подвески”.Значение центра крена может быть оценено только в том случае, когда учитывается центр массы автомодели.

Если есть различие между положениями центра масс и центра крена, то создается “плечо момента”. Когда автомодель испытывает боковое ускорение в повороте, центр крена перемещается вверх или вниз, и размер плеча момента, объединенный с жесткостью пружин и стабилизаторов поперечной устойчивости, диктует величину крена в повороте.

Переделываем радиоуправляемые машинки своими руками
Проведите воображаемые линии параллельно рычагам подвески (красного цвета). Затем проведите воображаемые линии между точками пересечения красных линий и нижними центрами колес, как показано на рисунке (зеленого цвета). Точка пересечения этих зеленых линий является центром крена.
Вам необходимо отметить, что центр крена перемещается, когда подвеска сжимается или поднимается, поэтому в действительности это мгновенный центр крена. Насколько этот центр крена перемещается при сжатии подвески, определяется длиной рычагов подвески и углом между верхними и нижними рычагами подвески (или регулируемых тяг подвески).
При сжатии подвески, центр крена поднимается выше и плечо момента (расстояние между центром крена и центром тяжести автомодели (CoG на рисунке)) будет уменьшаться. Это будет означать, что при сжатии подвески (например, при прохождении поворота), автомодель будет иметь меньшую тенденцию крениться (что хорошо, если вы не хотите перевернуться).
Когда вы используете шины с высоким сцеплением (микропористая резина), вы должны установить рычаги подвески таким образом, чтобы центр крена значительно поднимался при сжатии подвески. Дорожные автомодели с ДВС обладают очень агрессивными углами рычагов подвески для поднятия центра крена при прохождении поворотов и предотвращения переворачивания при использовании шин из микропористой резины.
Использование параллельных, равной длины рычагов подвески, приводит к фиксированному центру крена. Это означает, что при наклоне автомодели, плечо момента будет принуждать автомодель крениться все больше и больше. В качестве основного правила, чем выше центр тяжести вашей автомодели, тем выше должен быть центр крена для того, чтобы избежать переворачиваний.

“Bump Steer” – это тенденция колеса поворачивать, когда оно смещается вверх по ходу подвески. На большинстве автомоделей, передние колеса обычно испытывают расхождение (передняя часть колеса перемещается наружу), при сжатии подвески. Это обеспечивает недостаточную поворачиваемость при крене (когда вы сталкиваетесь с выступом при повороте, автомодель стремится выпрямиться). Избыточный “bump steer” увеличивает износ шин и на неровных трассах делает автомодель дерганной.

“Bump Steer” и центр крена
На ухабе, оба колеса поднимаются вместе. При крене, одно колесо поднимается, а другое опускается. Обычно это производит большее схождение на одном колесе и большее расхождение на другом колесе, таким образом обеспечивая эффект поворота.

При простом анализе вы можете просто допустить, что подруливание при крене аналогично “bump steer”, но на практике вещи подобные стабилизатору поперечной устойчивости оказывают влияние, которое это изменяет.”Bump steer” может быть увеличен путем поднятия внешнего шарнира или опускания внутреннего шарнира. Обычно требуется небольшая регулировка.

Оцените статью
Радиокоптер.ру
Добавить комментарий