Полетный контроллер: для чего нужен и какой лучше купить – Обзоры и статьи .ua

Базовые понятия

Квадрокоптеры бывают разные, но всех их объединяют четыре несущих винта:

Не смотря на кажущуюся симметрию, пилоту очень важно различать, где у квадрокоптера перед (показан стрелкой). Здесь, как у радиоуправляемых моделей автомобилей: при команде «вперед» квадрокоптер летит не туда, куда смотрит пилот, а туда, куда направлен воображаемый нос квадрокоптера.

Это таит в себе опасность: новичкам бывает трудно вернуть к себе подхваченный ветром аппарат, развернутый как-нибудь боком (мы, конечно, не говорим про полеты по камере от первого лица и про «умные» режимы полета с использованием компаса и GPS.) Решению этой проблемы частично могут помочь передние винты или лучи другого цвета, какой-нибудь шарик спереди или разноцветные светодиоды. Но все это оказывается бесполезным, когда пепелац стремительно превращается в точку над горизонтом.

Мы будем летать на раме квадрокоптера формы «X», потому что она мне больше нравится внешне. У каждой конструкции свои плюсы и свое предназначение. Кроме квадрокоптеров есть и другие мультикоптеры. Даже если не считать экзотические варианты, все равно их видов — целая куча!
Программируем квадрокоптер на Arduino (часть 1)

Разберемся, как наш квадрокоптер устроен внутри, и чем же должен заниматься полетный контроллер, который мы планируем программировать.

Углы тангажа, крена и рыскания (pitch, roll, yaw) — углы, которыми принято определять и задавать ориентацию квадрокоптера в пространстве.
Программируем квадрокоптер на Arduino (часть 1)Программируем квадрокоптер на Arduino (часть 1)Программируем квадрокоптер на Arduino (часть 1)Иногда слово «угол» опускают и просто говорят: тангаж, крен, рыскание. Но согласно Википедии это не совсем точно. Полет квадрокоптера в необходимом направлении достигается изменением этих трех углов. Например, чтобы полететь вперед квадрокоптер должен наклониться за счет того, что задние моторы закрутятся чуть сильнее передних:
Программируем квадрокоптер на Arduino (часть 1)
Газ квадрокоптера — среднее арифметическое между скоростями вращения всех моторов. Чем больше газ, тем больше суммарная тяга моторов, тем сильнее они тащат квадрокоптер вверх (НЕ ВПЕРЕД!!! «Тапок в пол» здесь означает наискорейший подъем). Обычно измеряется в процентах: 0% — моторы остановлены, 100% — вращаются с максимальной скоростью. Газ висения — минимальный уровень газа, который необходим, чтобы квадрокоптер не терял высоту.

Смотрите про коптеры:  Stellaris: Дневник разработчиков №148 - Реликвии и реликтовые миры

Газ, тангаж, крен, рыскание — если вы можете управлять этими четырьмя параметрами, значит вы можете управлять квадрокоптером. Их еще иногда называют каналами управления. Если вы приобрели двухканальный пульт, с квадрокоптером вам не совладать. Трехканальный скорее подойдет для маленьких вертолетов: без управления креном летать можно, но на квадрокоптере — не удобно.

Режимов полета существует много. Используется и GPS, и барометр, и дальномер. Но мы хотим реализовать базовый — режим стабилизации (stab, stabilize, летать в «стабе»), в котором квадрокоптер держит те углы, которые ему задаются с пульта не зависимо от внешних факторов. В этом режиме при отсутствии ветра квадрокоптер может висеть почти на месте. Ветер же придется компенсировать пилоту.

Направление вращения винтов выбирается не случайно. Если бы все моторы вращались в одну сторону, квадрокоптер вращался бы в противоположную из-за создаваемых моментов. Поэтому одна пара противостоящих моторов всегда вращается в одну сторону, а другая пара — в другую.

Скоростью вращения моторов управляет полетный контроллер (контроллер, ). Обычно это небольшая плата или коробочка с множеством входов и выходов. Существует огромное количество различных контроллеров с разным набором возможностей, разными прошивками, разными задачами. Вот лишь некоторые:

Обобщенной задачей полетного контроллера является несколько десятков раз в секунду выполнять цикл управления в который входит: считывание показаний датчиков, считывание каналов управления, обработка информации и выдача управляющих сигналов моторам, чтобы выполнять команды пилота. Именно это мы и собираемся запрограммировать.

Различных видов датчиков, которые можно задействовать, очень много. Мы будем использовать ставшие уже почти обязательными во всех квадрокоптерах трехосевой гироскоп и трехосевой акселерометр. Акселлерометр измеряет ускорение, гироскоп измеряет угловую скорость.

Благодаря им полетный контроллер узнает текущие углы тангажа, крена и рыскания. Эти датчики бывают встроенными в полетный контроллер, а бывают внешними. Процесс вычисления трех углов по показаниям датчиков — тема для отдельной статьи. Но нам этого здесь знать не надо: за нас все сделает MPU-6050.

Моторы на мультикоптерах потребляют большие токи, поэтому полетный контроллер управляет ими не напрямую, а через специальные аппаратные драйвера, называемые регуляторами скорости (ESC, ре́гуль, е́ска).

«Протокол» общения между регулятором и мотором нам не так важен, как «протокол» общения между полетным контроллером и регулятором, ведь нам предстоит из контроллера программно управлять регулятором. Бывают регуляторы, управляемые по i2c, но наиболее распространенные управляются сигналом прямоугольной формы с минимумом 0 вольт и максимумом 3-5 вольт (его называют ШИМ или PWM, а некоторые утверждают, что правильнее — PPM. Подробнее, например, здесь).

«Протокол» — это громко сказано: чтобы дать команду мотору вращаться с максимальной скоростью контроллер должен отправлять импульсы длительностью 2 миллисекунды, перемежающиеся логическим нулем длительностью 10 — 20 миллисекунд. Длительности импульса в 1 миллисекунду соответствует остановка мотора, 1.

При всей кажущейся простоте, здесь кроется засада: полетные контроллеры бывают разные с разными настройками, регуляторы бывают разные, и минимум (1 мс) и максимум (2 мс) — не универсальны. В зависимости от множества факторов диапазон 1-2 мс может на деле оказаться 1.1 — 1.9 мс.

Для того, чтобы регулятор и контроллер говорили абсолютно на одном языке существует процедура калибровки регуляторов. В ходе этой процедуры диапазоны регуляторов изменяются и становятся равными диапазону контроллера. Процедура зашита в программу каждого регулятора и включает в себя несколько простых шагов (шаги могут отличаться в зависимости от производителя — читайте инструкции!):

После этого в регулятор будут занесены соответствующие границы интервала. При попытке взлететь с некалиброванными регуляторами последствия могут оказаться неожиданными: от внезапного рывка квадрокоптера в ближайшее дерево до полной неподвижности моторов при любом значении газа.

PWM с точно таким же принципом использует и бортовой приемник. Это небольшое устройство, получающая сигналы радиоуправления с земли и передающая их в полетный контроллер. Чаще всего в полетном контроллере для каждого канала управления (газ, тангаж, крен и т.п.) имеется свой вход на который поступает PWM.

Раз между приемником и контроллером свои товарищеские PWM отношения, то их тоже придется калибровать: пульты с приемниками бывают разные со своими диапазонами работы. Контроллер должен уметь подстраиваться. Процедуру калибровки радио, в отличие от калибровки регуляторов нам придется создавать самим как часть полетный программы. Общий план калибровки такой:

Итак: во время калибровки радио полетный контроллер запоминает диапазоны приемника по всем каналам управления; во время калибровки регуляторов диапазон полетного контроллера заносится во все регуляторы.

Помимо программы для полетного контроллера необходима еще одна программа: интерфейс настройки полетного контроллера. Чаще всего им является программа для PC, которая соединяется с полетным контроллером по USB и позволяет пользователю настраивать и проверять полетную программу, например: запускать калибровку радио, настраивать параметры стабилизации, проверять работу датчиков, задавать маршрут полета на карте, определять поведение мультикоптера при потере сигнала и многое другое. Мы свой интерфейс настройки будем писать на C и Qt в виде консольной утилиты. Вот она, если заглянуть в будущее:

Никто не застрахован от случайностей. Даже десятидюймовые пластиковые винты на маленьких моторах могут оставить кровавые синяки на коже, которые будут болеть еще неделю (проверено лично). Элементарно сделать себе новый макияж и прическу, если зацепить стик газа на пульте, пока несешь включенный квадрокоптер.

Поэтому полетный контроллер должен обеспечивать хоть какую-то безопасность: механизм armed/disarmed. Состояние квадрокоптера «disarmed» означает, что моторы отключены и даже команда полного газа с пульта не имеет никакого эффекта, хотя питание подано.

Состояние «armed» квадрокоптера означает, что команды с пульта выполняются полетным контроллером. В этом состоянии квадрокоптеры взлетают, летают и садятся. Квадрокоптер включается и должен сразу попасть в состояние disarmed на тот случай, если невнимальельный пилот включает его, когда стик газа на пульте находится не в нуле.

Чтобы перевести коптер в состояние «armed» пилоту необхоимо сделать какой-то заранее оговоренный жест стиками пульта. Часто этим жестом является удержание левого стика в правом нижнем углу (газ = 0%, рыскание = 100%) втечении пары секунд. После этого полетный контроллер делает хотя бы минимальную самопроверку и при ее успешном прохождении “армится” (к полету готов!)

О моторах, аккумуляторах, регуляторах, пропеллерах

Выбор комплектующих для мультикоптера — тема для целого цикла статей. Если вы собираетесь сделать свой первый квадрокоптер — сформулируйте, для чего он вам нужен, и воспользуйтесь советами бывалых или возьмите список комплектующих, который составил кто-то другой и успешно на нем летает.

И все же для общего понимания полезно знать основные моменты.

Аккумуляторы

Среди любителей и профессионалов многороторных систем наиболее распространены литий-полимерные аккумуляторы, как основные источники питания бортовой электроники и моторов. Их различают по емкости, напряжению и максимальной токоотдаче. Емкость, как обычно, измеряется в ампер-часах или миллиампер-часах. Напряжение измеряется в количестве «банок» аккумулятора. Одна «банка» — в среднем 3.7 вольт. Полностью заряженая «банка» — 4.2 вольта. Наиболее распространеты аккумуляторы с количеством банок от трех до шести. Максимальная токоотдача измеряется в амперах, а маркируется, например вот так: 25C. C — емкость аккумулятора, 25 — множитель. Если емкость равна 5 амперам, то такой аккумулятор может отдавать 25 * 5 = 125 ампер. Конечно же параметр токоотдачи лучше брать с запасом, но, в основном, чем он больше, тем дороже аккумулятор. Пример маркировки: 25C 3S 4500mah.

Каждая банка является отдельным аккумулятором. Все они спаяны последовательно. Для того чтобы равномерно заряжать все банки предусматривается баллансировочный разъем с доступом к каждой банке отдельно, и использутся специальные зарядные устройства.

Моторы, пропеллеры, регуляторы

Основной параметр бесколлекторного мотора — его kv. Это количество оборотов в минуту на каждый вольт поданного напряжения. Наиболее распространены моторы с kv от 300 до 1100. Kv ближе к 1000 обычно выбирают для малых квадрокоптеров (1-2 килограмма плюс 500 граммов полезной нагрузки) и ставят на них пластиковые пропеллеры до 12 дюймов в диаметре. На больших мультикоптерах (для поднятия хорошей и тяжелой фото-видео техники) или на долголетах (для рекордов по времени полета) обычно стоят моторы с низким kv (300-500) и огромными карбоновыми пропеллерами (15 — 20 дюймов в диаметре). Kv — не единственный важный параметр мотора: часто можно встретить целые таблицы зависимости мощности мотора и тяги от подаваемого напряжения и типа установленного пропеллера. Кроме того, каждый мотор рассчитан на свой диапазон напряжений (количество банок аккумулятора) и на свой максимальный ток. Если производитель пишет 3-4S, не стоит использовать его с 5S аккумуляторами. Это же касается и регуляторов.

Если мотор рассчитан на ток до 30А, то регулятор стоит рассчитывать на ток до 30 10А, чтобы не допускать перегревов. Некачественные или неподходящие регуляторы могут вызвать так называемые «срывы синхронизации» и остановку мотора в полете, и вы узнаете еще один мультироторный термин: “поймал планету.” Еще один важный момент — толщина и качество проводов. Неправильно рассчитанное сечение провода или плохой коннектор могут привести к пожару в воздухе.

Как видите, нюансов очень много. Я не перечислил даже половины, поэтому самому подобрать комплектующие для первого мультикоптера довольно трудно.

Иной язык

Несмотря на то, что сейчас “рулят” си-подобные ECMA-языки, мы нормально отнеслись к тому, что от этого придется отказаться. Более того, кажется, что чем больше программа, тем больше вредит укорочение ключевых слов и конструкций. Что касается Rust, то он – субъективно – в отношении минимализма издалека сильно напоминает Perl, к сожалению.

И наоборот, по ощущениям, пространные, многобуквенные конструкции раздражают, когда разум летит вперед, но не мешают, когда во главу угла ставится надежность, понятность, и легкость чтения. В этом смысле Ada (а SPARK это подмножество Ada) вполне хорош. Теперь давайте посмотрим, что же язык Ada может дать embedded-разработчику.

 Профили

Сам язык и стандартная библиотека позволяет определять и использовать так называемые “профили”. Профиль это набор ограничений, выполнение которых контролирует компилятор. Например, можно определить ограничение “нельзя использовать динамическую память”.

Мы используем профиль Ravenscar, специально для embedded-разработки. Он включает пару дюжин ограничений, которые делают вашу разработку для микроконтроллеров более удобной и верифицируемой: нельзя на ходу переназначать приоритеты задач-потоков, переключать обработчики прерываний, сложные объекты из stdlib-ы и такое.

Вот ограничения профиля Ravescar, для примера

 Runtime

Когда в embedded необходимо создать более-менее сложное приложение, там всегда заводится RTOS, и ее выбор и интеграция это отдельная песня. В случае с Ada с этим больше нет сложностей – сама Ada включает в себя минимальную исполняемую среду с вытесняющим планировщиком потоков (в Ada это tasks, задачи), с интегрированными в сам язык средствами синхронизации (семафоры, рандеву, называются entries) и даже средствами избегания дедлоков и инверсии приоритетов. Это оказалось очень удобно для квадрокоптера, как станет понятно ниже.

Для embedded-разработчика доступны на выбор также разные рантаймы:

Вот пример описания пустой задачи

Хочется обратить внимание, что эти задачи – это по сути легковесные green threads, так как под ними нет никаких настоящих потоков не существует. Поэтому мы не страдаем от отсутствия корутин, ведь задачи не тяжелее них, зато встроены в язык.

Кроме этого, в Ada есть достаточно мощная stdlib для ядра STM32, включая полную реализацию рантайма. Возможно, и для вашей архитектуры она тоже есть.

Почему не “rustRustRUST”!

Когда мы говорим, про гарантии в языках программирования, сразу вспоминается Rust и его гарантии относительно указателей. Почему тут не он? Нам кажется, что Spark мощнее.

Ada не очень любит указатели – там они называются access types, и в большинстве случаев там они не нужны, но если нужны, то – в Spark также есть проверки владения, как в Rust. Если вы аллоцировали объект по указателю, то простое копирование указателя означает передачу владения (которую проконтролирует компилятор/верификатор), а передачу во временное владение (или доступ на чтение) верификатор также понимает и контролирует.

В общем, концепция владения объектом по указателю, и уровень доступа через этот указатель – есть не только в Rust, и его преимуществами можно пользоваться и в других инструментах, в частности, в Ada/SPARK. Подробно можно почитать в [UPS]

Вот пример кода с владением

Почему мы пишем, что в Ada/SPARK не нужны указатели? В отличие от Си, где базовым инструментом является указатель (хочешь ссылку – вот указатель, хочешь адрес в памяти – вот указатель, хочешь массив – вот указатель – ну вы поняли?), в Ada для всего этого есть строгий тип.

Если уже и этого мало, есть интероп с СИ – то есть код можно компилировать совместно, и слинковать на этапе сборки. Но в этом случае гарантии поведения модуля как черного ящика остаются на разработчике. Для интеропа используются атрибуты – вот так, например, мы оборачиваем функцию на Си в доступ для Ada.

Для соблюдения нужного layout или битности в коде также не нужны указатели: Ада при необходимости позволяет детально описать, как именно структура будет располагаться в памяти. Минус ошибки на конвертации из логического в физическое представления и обратно – прощайте битовые сдвиги, сложения на кольце, арифметика указателей.

IDE

Для работы доступна вполне приятная и удобная IDE, но всегда можно использовать и VSCode с плагинами, и другие текстовые редакторы.

О производительности и надежности

Вполне валидным аргументом может быть вопрос с эффективностью ПО. Что касается эффективности, то в интернете доступно свежее исследование [EFF], из которого хочется привести табличку, показывающую, что “старичок» Ada еще огого:

Если говорить о надежности, то SPARK/Ada известен как один из языков с наименьшим количеством ошибок. В планируемом на 21 запуске кубсатов [LIC] полетное ПО планируется реализовывать на Ada, предыдущий спутник BasiLEO тоже на Ada был единственным среди 12, кому удалось приступить к планируемой миссии.

Математика стабилизации, пид-регуляторы (pid)

Если вы решили заняться мультикоптерами, то рано или поздно вам придется столкнуться с настройкой ПИД-регулятора, поскольку этот математический аппарат применяется почти во всех задачах стабилизации: стабилизация углов квадрокоптера в воздухе, полет и удержание позиции по GPS, удержание высоты по барометру, бесколлекторные механизмы стабилизации видеокамеры в полете (подвес камеры).

Вы приобретаете двухосевой подвес для камеры, ставите туда, например, GoPro, включаете и вместо стабилизации получаете конвульсии, вибрации и дергания, хотя все датчики откалиброваны и механические проблемы устранены. Причина — неверные параметры ПИД-регуляторов.

Вы собираете мультикоптер, калибруете датчики, регуляторы, радио, все проверяете, пытаетесь взлететь, а он такой унылый в воздухе, что его даже легким ветерком переворачивает. Или наоборот: он такой резкий, что внезапно срывается с места и крутит тройное сальто без разрешения. Причина все та же: параметры ПИД-регуляторов.

Для многих устройств использующих ПИД-регуляторы существуют инструкции по настройке, а то и несколько в добавок к многочисленным видеонструкциям от самих пользователей. Но чтобы легче ориентироваться в этом многообразии полезно понимать, как же внутри устроены эти регуляторы.

Кроме того, мы же собираемся писать собственную систему стабилизации квадрокоптера! Предлагаю вместе со мной самим заново «изобрести» и «на пальцах» понять формулу ПИД-регулятора. Для тех, кому больше нравится сухой математический язык, я рекомендую Википедию, английскую статью, т.к. в русской пока не так подробно изложен материал.

Будем рассматривать квадрокоптер в двумерном пространстве, где у него есть только один угол — угол крена, и два мотора: левый и правый.

В полетный контроллер непрерывно поступают команды с земли: «крен 30 градусов», «крен -10 градусов», «крен 0 градусов (держать горизонт)»; его задача — как можно быстрее и точнее их выполнять с помощью моторов с учетом: ветра, неравномерного распределения веса квадрокоптера, неравномерного износа моторов, инерции квадрокоптера и т.п.

Таким образом, полетный контроллер должен непрерывно решать задачу, какую скорость вращения подавать на каждый мотор с учетом текущего значения угла крена и требуемого. Непрерывно — это, конечно, громко сказано. Все зависит от вычислительных возможностей конкретного железа.

На Adruino вполне можно одну итерацию цикла обработки и управления уместить в 10 миллисекунд. Это значит, что раз в 10 миллисекунд будут считываться показания углов квадрокоптера, и на их основе будут отправляться управляющие сигналы к моторам. Эти 10 миллисекунд называют периодом регулирования. Понятно, что чем он меньше, тем чаще и точнее происходит регулирование.

Уровень газа поступает из приемника в контроллер. Обозначим его Программируем квадрокоптер на Arduino (часть 1). Напомню, что это среднее арифметическое между скоростями вращения всех моторов, выраженное в процентах от максимальной скорости вращения. Если Программируем квадрокоптер на Arduino (часть 1) и Программируем квадрокоптер на Arduino (часть 1) — скорости вращения левого и правого моторов, то:где Программируем квадрокоптер на Arduino (часть 1) — реакция квадрокоптера (усилие), которое создает момент вращения за счет того, что левый мотор вращается на Программируем квадрокоптер на Arduino (часть 1) быстрее, чем газ, а правый — на столько же медленнее. Программируем квадрокоптер на Arduino (часть 1) может принимать и отрицательные значения, тогда правый мотор закрутится быстрее. Если мы научимся вычислять эту величину на каждой итерации цикла обработки, значит мы сможем управлять квадрокоптером. Понятно, что Программируем квадрокоптер на Arduino (часть 1) как минимум должно зависеть от текущего угла крена (Программируем квадрокоптер на Arduino (часть 1)) и желаемого угла крена (Программируем квадрокоптер на Arduino (часть 1)), который поступает с пульта управления.Представим ситуацию: поступает команда «держать горизонт» (Программируем квадрокоптер на Arduino (часть 1) = 0), а квадрокоптер имеет крен влево:Программируем квадрокоптер на Arduino (часть 1) — разность (ошибка) между Программируем квадрокоптер на Arduino (часть 1) и Программируем квадрокоптер на Arduino (часть 1), которую контроллер стремится минимизировать.

Чем больше разность между желаемым углом крена и текущим, тем сильнее должна быть реакция, тем быстрее левый мотор должен закрутиться относительно правого. Если это записать с использованием наших обозначений:

Здесь P — коэффициент пропорциональности. Чем он больше, тем сильнее будет реакция, тем резче квадрокоптер будет реагировать на отклонение от требуемого угла крена. Эта интуитивно понятная и простая формула описывает работу пропорционального регулятора.

За несколько десятков миллисекунд (несколько итераций цикла обработки) под воздействием пропорционального регулятора квадрокоптер вернется в требуемое (в данном случае горизонтальное) положение. Все это время ошибка Программируем квадрокоптер на Arduino (часть 1) и усилие Программируем квадрокоптер на Arduino (часть 1) будут иметь один и тот же знак, хоть и становиться все меньше по модулю. Набрав какую-то скорость поворота (угловую скорость) квадрокоптер просто перевалится на другой бок, ведь никто его не остановит в требуемом положении. Все равно что пружина, которая всегда стремится вернуться в начальное положение, но если ее оттянуть и отпустить — будет колебаться, пока трение не возьмет верх. Конечно, на квадрокоптер тоже будет действовать трение, но практика показывает, что его не достаточно.По этой причине в пропорциональный регулятор нужно добавить еще одно слагаемое, которое будет тормозить вращение квадрокоптера и препятствовать перерегулированию (переваливанию в противоположную сторону) — своего рода имитация трения в вязкой среде: чем быстрее поворачивается квадрокоптер, тем сильнее надо пытаться его остановить, конечно, в разумных пределах. Скорость вращения (скорость изменения ошибки ) обозначим как Программируем квадрокоптер на Arduino (часть 1), тогда:

где D — настраиваемый коэффициент: чем он больше, тем сильнее останавливающее усилие. Из школьного курса физики всплывают смутные воспоминания, что скорость изменения любой величины — производная этой величины по времени:

И вот пропорциональный регулятор превращается в пропорционально-дифференциальный (пропорциональное слагаемое и дифференциальное):

Ошибку Программируем квадрокоптер на Arduino (часть 1) вычислить легко, ведь на каждой итерации мы знаем Программируем квадрокоптер на Arduino (часть 1) и Программируем квадрокоптер на Arduino (часть 1); P и D — настраиваемые перед запуском параметры. Для вычисления производной (скорости изменения Программируем квадрокоптер на Arduino (часть 1)) необходимо хранить предыдущее значениеПрограммируем квадрокоптер на Arduino (часть 1), знать текущее значение Программируем квадрокоптер на Arduino (часть 1) и знать время, которое прошло между измерениями (период регулирования). И вот она — физика шестого класса школы (скорость = расстояние / время):Программируем квадрокоптер на Arduino (часть 1) — период регулирования; Программируем квадрокоптер на Arduino (часть 1) — значение ошибки с предыдущей итерации цикла регуляции. Кстати, эта формула — простейший способ численного дифференцирования, и он нам здесь вполне подойдет.

Теперь у нас есть пропорционально-дифференциальный регулятор в плоском «бикоптере», но осталась еще одна проблема. Пусть левый край будет весить чуть больше правого, или, что то же самое, левый мотор работает чуть хуже правого. Квадрокоптер чуть наклонен влево и не поворачивается обратно: дифференциальное слагаемое равно нулю, а пропорциональное слагаемое хоть и принимает положительное значение, но его не хватает, чтобы вернуть квадрокоптер в горизонтальное положение, ведь левый край весит чуть больше правого. Как следствие — квадрокоптер будет все время тянуть влево.

Необходим механизм, который бы отслеживал такие отклонения и исправлял их. Характерной особенностью таких ошибок является то, что они прявляют себя со временем. На помощь приходит интегральное слагаемое. Оно хранит сумму всех ошибкок Программируем квадрокоптер на Arduino (часть 1) по всем итерациям цикла обработки. Как же это поможет? Если пропорционального слагаемого не достаточно, чтобы исправить маленькую ошибку, но она все равно есть — постепенно, со временем, набирает силы интегральное слагаемое, увеличивая реакцию Программируем квадрокоптер на Arduino (часть 1) и квадрокоптер принимает требуемый угол крена.Тут есть нюанс. Предположим Программируем квадрокоптер на Arduino (часть 1) равна 1 градусу, цикл регулирования — 0.1с. Тогда за одну секунду сумма ошибок примет значение 10 градусов. А если цикл обработки — 0.01с, то сумма наберет аж 100 градусов. Чтобы за одно и тоже время интегральное слагаемое набирало одно и тоже значение при разных периодах регулирования, полученную сумму будем умножать на сам период регулирования. Легко посчитать, что в обоих случаях из примера получается сумма в 1 градус. Вот оно — интегральное слагаемое (пока без настраиваемого коэффициента):Эта формула — не что иное, как численный интеграл по времени функции Программируем квадрокоптер на Arduino (часть 1) в интервале от нуля до текущего момента. Именно поэтому слагаемое называется интегральным:

где T — текущий момент времени.Пришло время записать окончательную формулу пропорционально-интергрально-дифференциального регулятора:

где Программируем квадрокоптер на Arduino (часть 1) — один из настраиваемых параметров, которых теперь трое: Программируем квадрокоптер на Arduino (часть 1). Эта формула удобна в применении из программного кода, а вот формула, которая приводится в учебниках:

Существует несколько ее вариаций, например, можно ограничить модуль интегрального слагаемого, чтобы он не превысил определенный допустимый порог (мы так и будем делать).

Полетный контроллер apm 2.6,обзор и полная видеоинструкция.

Распаковка

Всем привет!!! Очень давно не заходил на

mysku.club

и не писал обзоры, от части из за не хватки времени, от части из за ситуации в Украине 🙁

В общем выдался свободный вечер и решил написать обзор, по моему любимому контроллеру

APM 2.6

, так как набралось большое количество видео материала по настройке и сборке.Но думаю писать я буду по минимум, за то будет очень много видеороликов, не зря же я столько работы проделал :)Нус, начнемс.

Контроллер АРМ на сегодня самый многофункциональный и не дорогой, его используют чаще всего на мультикоптерах (прошивка Arducopter ) и на самолетах (прошивка Ardupilot) а также поддерживает автомобиль и вертолет, в общем вот платформы которые поддерживает контроллер :

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

У АРМ самое большое количество полетных режимов из всех контроллеров что есть на рынке, возможность управлять дроном с помощью смартфона или планшета, при этом открывается огромный функционал: создание полетного задания, управление, переключение режимов, мониторинг и телеметрия с указанием всех данных, и многое другое… Минус этого контроллера в том, что он не летает из «коробки», а требует знаний и серьезной подготовки.Но я в своих видео максимально просто и подробно постарался объяснить от А до Я, надеюсь поможет новичкам, и будет полезен людям кто решил освоить АРМ.

В данной статье и видео будет рассмотрено подключение контроллера к квадрокоптеру, в дальнейшем будет такой же видео курс по Ardupilot то есть по установке на самолет.

В апреле месяце появился на Бангуде полный комплект АРМ 2.6 за соблазнительные 137 доллара, на то время это была наверное самая низкая цена за такой комплект.
Я конечно ожидал подвоха за такую цену, но жабка одобрительно кивнула и ее в последствии не разочаровал, комплект оказался качественным, и все сразу работало.Посылка дошла очень быстро, даже двух недель не прошло.
Комплект поставки в себя включал: контроллер АРМ уже с коробочкой, демпферная площадка под контроллер,GPS модуль с магнитометром в корпусе и со стоечкой, радиотелеметрия 433мГц,Minimosd и Power Module, не плохо за такую сумму 🙂 (видео с распаковкой и комплектацией выше в начале статьи) Единственное чего нет в комплекте, и будет нужно для прошивки ОСД это FTDI программатор, его можно купить там же на Бангуде, ТЫЦ

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Первое что желательно сделать это прошить PPM-encoder, это нас сразу убережет от дальнейших танцев с бубном.В любом случае всегда желательно залить свежую прошивку PPM-encoder для правильной отработки при фалсейве.Инструкция по прошивке:

Ссылка на прошивку PPM:
Ссылка на прогу Flip

:

www.atmel.com/tools/FLIP.aspx

Так же можно сразу залить правильный конфиг в модуль GPS, хоть в данном наборе ГПС работал нормально, я все равно перестраховался.Инструкция по настройке GPS:

Ссылка на прогу U-centr:
Ссылка на Конфигурационный файл с настройкой для APM

:

Приступаем к сборке, подключению и прошивке самого контроллера.Подробно в этом видео:

После подключения и прошивки, необходимо настроить Пиды квадрокоптера.
Простая настройка PID значения Pitch and Roll с помощью крутилки на аппаратуре:

Более продвинутая настройка PID с помощью режима Autotune mode:

После настройки пидов, пришло время подключить радиотелеметрию.Подробно о использовании телеметрии с смартфоном или планшетом, а так же о полетных режимах и настройки Фалсейва:

Теперь после всех настроек можно подключать Power Module, но его мы будем использовать только как датчик тока.Видео о настройке и по подключению:

Пред подключением ОСД и использования квадрокоптера для FPV полетов, стоит задуматься о правильном питании контроллера.Так как все отказы АРМ происходят именно из за плохого питания.Подробно о правильной запитке контроллера:

Ну или если нет возможности организовать питание как у меня, купить любой ВЕК на 5волт, хотя он на 100% надежен не будет.А запитывать от любого Power Module который позиционируется как для АРМ, я вообще не рекомендую, только использовать как датчик тока.

Настало время подключить MinimOSD.Подробно о прошивке, настройке и подключению:

Теперь можно летать и радоваться 🙂
Надеюсь вам понравился мой вариант статьи: Мало букаФ-Много фильмов 🙂
Пройдя поэтапно все настройки согласно моих видеоинструкций, вы наверняка взлетите.Думаю видео материала вам будет достаточно для постижения дзена контроллера АРМ, и целого дня чтоб все пересмотреть.
Ставим лайки кому понравилась проделанная работа по видеоурокам, а так же чтоб у меня был стимул сделать подобный курс по Ардупилоту.

Пример

Итак, учитывая все эти различные сравнительные характеристики, какую информацию вы можете получить о контроллере полёта и что может включать контроллер полета? В качестве примера мы выбрали Quadrino Nano Flight Controller.

Главный процессор

Используемый на борту ATMel ATMega2560 является одним из наиболее мощных Arduino-совместимых чипов ATMel. Хотя он имеет в общей сложности 100 выводов, включая 16 аналогово-цифровых каналов и пять портов SPI, из-за его небольшого размера и предполагаемого использования в качестве контроллера полёта, на плате присутствуют только некоторые из них.

  • AVR vs PIC: AVR
  • Процессор: 8-бит
  • Рабочая частота: 16МГц
  • Программная память/Flash: 256Кбайт
  • SRAM: 8Кбайт
  • EEPROM: 4Кбайт
  • Дополнительные контакты ввода/вывода: 3 × I2C; 1 × UART; 2 × 10-контактных GPIO; Серво с 5 × выходами; OLED порт
  • Аналого-цифровой преобразователь: 10-бит

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Сенсоры

Quadrino Nano включает микросхему MPU9150 IMU, которая включает в себя 3-осевой гироскоп, 3-осевой акселерометр и 3-осевой магнитометр. Это помогает сделать плату достаточно маленькой, не жертвуя качеством датчика. Барометр MS5611 предоставляет данные о давлении и покрыт кусочком пены. Интегрированный Venus 838FLPx GPS с внешней GPS антенной (в комплекте).

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Программное обеспечение

Quadrino Nano был создан специально для использования новейшего программного обеспечения MultiWii (на базе Arduino). Вместо того, чтобы изменять код Arduino напрямую, было создано отдельное, более графическое программное обеспечение.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Связь

  • Прямой ввод от стандартного RC приёмника.
  • Порт выделенного спутникового ресивера Spektrum
  • Последовательный (SBus и/или Bluetooth или 3DR радиосвязи)

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Дополнительные факторы

  1. Корпус: защитный полупрозрачный корпус входит в стандартную комплектацию
  2. Монтаж: Есть два основных способа крепления Quadrino Nano к дрону: винты и гайки или наклейка из вспененной резины.
  3. Компактная конструкция: сам контроллер (без учёта GPS антенны) имеет размеры 53 × 53мм.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Связь

Радиоуправление (RC)

Управление посредством радиосвязи обычно включает в себя RC передатчик/RC transmitter (в беспилотном хобби — радиоаппаратура управления/пульт) и RC приёмник (RC receiver). Для взаимодействия с БПЛА пользователю потребуется как минимум четырёх (и более) канальный RC передатчик. По умолчанию первые четыре канала связаны с:

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Все остальные имеющиеся каналы могут быть задействованы для таких действий как:

  • Арминг (Arming или Arm)/Дизарминг (Disarming или Disarm) — постановка/снятие с охраны моторов.
  • Управление подвесом (панорамирование вверх/вниз, вращение по часовой стрелке/против часовой стрелки, зуммирование)
  • Смена режимов полёта (ACRO/ANGLE и т.д.)
  • Активировать/Задействовать полезную нагрузку (парашют, зуммер или другое устройство)
  • Любое другое применение

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Большинство пользователей (пилотов БПЛА) предпочитают именно ручное управление, это ещё раз доказывает, что пилотирование при помощи аппаратуры управления по прежнему является выбором номер один. Сам по себе RC приёмник просто передаёт поступающие от RC передатчика значения, а значит не может управлять беспилотником. RC приёмник должен быть подключен к контроллеру полёта, который в свою очередь должен быть запрограммирован для приёма RC сигналов. На рынке очень мало полётных контроллеров, которые принимают входящие радиокоманды от приёмника на прямую, а большинство ПК даже обеспечивают питание приёмника от одного из контактных выводов. Дополнительные соображения при выборе пульта дистанционного управления включают в себя:

  • Не все RC передатчики могут обеспечить полный диапазон RC сигналов от 500мс до 2500мс; некоторые искусственно ограничивают этот диапазон, так как большинство используемых RC предназначены для радиоуправляемых автомобилей, самолётов и вертолётов.
  • Дальность/Макс. воздушный радиус действия (измеряется в футах или метрах) RC-системы практически никогда не предоставляются производителями, поскольку на этот параметр влияют множество факторов, таких как помехи, температура, влажность, заряд батареи и другие.
  • Некоторые RC-системы имеют приёмник, который также имеет встроенный передатчик для передачи данных от датчика (например, GPS-координат), которые в последствии будут отображаться на ЖК-дисплее RC передатчика.

Bluetooth

Bluetooth и более поздние продукты BLE (Bluetooth Low Energy) изначально предназначались для передачи данных между устройствами без заморочек сопряжения или согласования частот. Некоторые имеющиеся на рынке контроллеры полёта могут отправлять и получать данные по беспроводной связи через соединение Bluetooth, что упрощает поиск неисправностей в полевых условиях.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Wi-Fi

Управление по Wi-Fi обычно достигается посредством Wi-Fi роутера, компьютера (в том числе ноутбук, десктоп, планшет) или смартфон. Wi-Fi в состоянии справится как с передачей данных, так и с передачей видеопотока, но одновременно с этим эту технологию сложнее настроить/реализовать. Как и для всех Wi-Fi устройств, расстояние удаления ограничено Wi-Fi передатчиком.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Радиочастота (RF или РЧ)

Радиочастотное (РЧ) управление в этом контексте относится к беспроводной передаче данных с компьютера или микроконтроллера на летательный аппарат с использованием РЧ передатчика/Приёмника (или двухполосного приёмопередатчика). Использование обычного радиочастотного блока, подключенного к компьютеру, позволяет осуществлять двухполосную связь на большие расстояния с высокой «плотностью» данных (обычно в последовательном формате).

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Смартфон

Хоть это и не тип связи, самого вопроса, как управлять дроном используя смартфон, достаточно, чтобы уделить ему отдельный раздел. Современные смартфоны это по сути мощные компьютеры, которые по случайному совпадению могут также совершать телефонные звонки. Почти все смартфоны имеют встроенный модуль Bluetooth, а также модуль WiFi, каждый из которых используется для управления дроном и/или получения данных и/или видео.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Инфракрасное излучение (Infrared (IR))

Инфракрасная связь (то что можно найти в каждом телевизионном пульте дистанционного управления) редко используется для управления дронами, так как даже в обычных комнатах (не говоря уже об открытом пространстве) присутствует так много инфракрасных помех, что они не очень надёжны. Несмотря на то, что технологию можно использовать для управления БПЛА, не может быть предложена как основной вариант.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Сенсоры

С точки зрения аппаратного обеспечения, контроллер полёта по сути является обычным программируемым микроконтроллером, только со специальными датчиками на борту. Как минимум, контроллер полёта будет включать в себя 3-осевой гироскоп, но без автовыравнивания. Не все контроллеры полёта оснащаются указанными ниже сенсорами, но они также могут включать их комбинацию:

  • Акселерометр: Как следует из названия, акселерометры измеряют линейное ускорение по трем осям (назовём их: X, Y и Z). Обычно измеряется в «G (на рус. Же)». Стандартное (нормальное) значение, составляет g = 9.80665 м/с². Для определения положения, выход акселерометра может быть интегрирован дважды, правда из-за потерь на выходе объект может быть подвержен дрейфу. Самой значимой характеристикой трёхосевых акселерометров является то, что они регистрируют гравитацию, и как таковые, могут знать, в каком направлении «спуск». Это играет главную роль в обеспечении стабильности многороторного БЛА. Акселерометр должен быть установлен на контроллере полёта так, чтобы линейные оси совпадали с основными осями беспилотника.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

  • Гироскоп: Гироскоп измеряет скорость изменения углов по трём угловым осям (назовём их: альфа, бета и гамма). Обычно измеряется в градусах в секунду. Обратите внимание, что гироскоп не измеряет абсолютные углы напрямую, но вы можете выполнить итерацию, чтобы получить угол, который, как и у акселерометра, способствует дрейфу. Выход реального гироскопа имеет тенденцию быть аналоговым или I2C, но в большинстве случаев вам не нужно беспокоиться об этом, так как все поступающие данные обрабатываются кодом контроллера полёта. Гироскоп должен быть установлен так, чтобы его оси вращения совпадали с осями БПЛА.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

  • Инерционный измерительный блок (IMU): IMU — по сути, это небольшая плата, которая содержит как акселерометр, так и гироскоп (обычно многоосевые). Большинство из них включают трёхосевой акселерометр и трёхосевой гироскоп, другие могут включать дополнительные сенсоры, например трёхосевой магнитометр, обеспечивающий в общей сложности 9 осей измерения.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

  • Компас/Магнитометр: Электронный магнитный компас способный определять магнитное поле Земли и использовать эти данные для определения направления компаса беспилотника (относительно северного магнитного полюса). Этот сенсор почти всегда присутствует, если система имеет GPS вход и доступно от одной до трех осей.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

  • Давление/Барометр: Так как атмосферное давление изменяется по мере удаления от уровня моря, можно использовать сенсор давления, чтобы получить довольно точные показания высоты БПЛА. Для расчёта максимально точной высоты, большинство контроллеров полёта получают данные одновременно от сенсора давления и спутниковой системы навигации (GPS). При сборке обратите внимание, что предпочтительнее, чтобы отверстие в корпусе барометра было накрыто куском поролона, это уменьшить отрицательное влияние ветра на чип.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

  • Расстояние: Датчики расстояния все чаще используются на беспилотниках, поскольку GPS-координаты и датчики давления не могут рассказать вам, насколько далеко вы находитесь от земли (холма, горы или здания), либо столкнётесь ли вы с объектом или нет. Датчик расстояния, обращенный вниз, может быть основан на ультразвуковой, лазерной или лидарной технологии (ИК-сенсоры могут испытывать проблемы в работе при солнечном свете). Датчики расстояния редко входят в стандартный комплект полётного контроллера.

Полетный контроллер: для чего нужен и какой лучше купить - Обзоры и статьи .ua

Оцените статью
Радиокоптер.ру
Добавить комментарий