Программирование промышленных роботов в SprutCAM

Программирование промышленных роботов в SprutCAM Роботы

Чем отличается робототехника для детей от профессиональной?

Если коротко, то робототехника для детей направлена на изучение предмета, тогда как профессиональная – на решение конкретных задач. Если специалисты создают промышленные манипуляторы, выполняющие разные технологические задачи, или специализированные колесные платформы, то любители и дети, конечно же, занимаются вещами попроще.

Татьяна Волкова, сотрудник Центра интеллектуальной робототехники: «Как правило, с чего все начинают: разбираются с моторами и заставляют робота элементарно ехать вперед, потом – делать повороты. Когда робот выполняет команды движения, можно уже подключить датчик и сделать так, чтобы робот ехал на свет или, наоборот, «убегал» от него. А дальше идет любимая задача всех новичков: робот, который ездит по линии. Устраиваются даже различные гонки роботов».

Когда начинать обучение робототехнике?

Применение индустриальных роботов во всем мире каждый год увеличивается. К 2018 году более 1,3 млн роботов будут введены в эксплуатацию по всему миру. Средний показатель плотности применения роботов в производстве, по данным 2014 года, равен 66 единицам на 10 тыс. работников. В 21 стране этот показатель выше среднего (рис. 1).

В них входит большинство индустриально развитых страх Европы, США, Канада и Азиатский регион (Южная Корея, Япония, Тайвань). Словения занимает в этом списке не последнее место и с показателем 100 роботов на 10 тыс. человек занимает лидирующие позиции по автоматизации производства. Наибольшее применение роботы находят в автомобильной промышленности, где наблюдается более высокая плотность роботизации производства (рис. 2).

Рис. 1. Плотность применения роботов

Смотрите про коптеры:  ASIMO - это... Что такое ASIMO?

Рис. 2. Распределение роботов по отраслям

Самой распространенной областью применения роботов является выполнение повторяющихся операций на производственных линиях, таких как сварка, перемещение деталей, покраска, сборка и др. Как правило, роботы на таких линиях действуют циклически по программе и выполняют одни и те же операции, заменяя рутинный человеческий труд.

Робот, благодаря наличию шести степеней свободы, может также делать сложные многоосевые перемещения вдоль необходимой траектории, выполняя, таким образом, любую обработку, которая до этого была возможна только на специализированных станках. Это становится реальным прежде всего вследствие многолетней эволюции индустриальных роботов и контроллеров.

Программирование промышленных роботов в SprutCAM

Индустриальные роботы стали более точными и жесткими — возможно позиционирование робота с точностью до нескольких сотых долей миллиметра. Совершеннее стали и контроллеры роботов — они позволяют управлять несколькими роботами одновременно, а также интерполировать перемещения робота с дополнительными линейными и поворотными осями.

Тенденция применения индустриальных роботов для различных видов обработки материалов приобретает всё большую популярность в мировой промышленности. И этому есть объяснение: роботы имеют ряд преимуществ перед классическими станками с ЧПУ, такие как: шесть степеней свободы; большая зона обработки; использование того же робота для захвата заготовки; более низкая стоимость; использование дополнительных осей позиционирования детали.

Разберем эти преимущества и рассмотрим конкретные примеры и области применения индустриального робота для обработки материалов. Конечно, при помощи роботов можно заменить далеко не все типы обработки, так как имеют место ограничения по точности и жесткости. Далее будут рассмотрены примеры применения роботов в тех областях, где это экономически целесообразно и удовлетворяет требуемому качеству конечных изделий.

Станки с ЧПУ, позволяющие обрабатывать деталь по пяти степеням свободы, безусловно, являются более дорогими по сравнению с простыми трехосевыми станками. А если такой станок предназначен для обработки крупногабаритных деталей, то его стоимость возрастает в геометрической прогрессии.

Все индустриальные роботы, так же как и пятиосевые станки, изначально имеют возможность позиционировать инструмент, но стоимость такого решения иногда в разы меньше сходного по характеристикам станка. В результате сложная пятиосевая обработка изделий, нетребовательных к точности, становится доступной даже для малых предприятий. Яркий пример тому — художественная обработка камня (рис. 3).

Рис. 3. Обработка камня

Художественная обработка материалов — не только камня, но и дерева, гипса, пластика и др. — одна из наиболее подходящих областей для применения роботов. Здесь не требуется высокая точность, при этом, как правило, заготовки бывают довольно внушительных размеров и всегда имеют поверхность сложной формы. Применение робота позволяет выполнять обработку любой сложности и полностью в многоосевом режиме.

Очень часто изделие, которое необходимо обработать, требует от оборудования больших зон перемещения. Примерами могут служить корпуса лодок, шасси прицепов, прототипирование крупногабаритных изделий, подготовка форм для литья и др. Для обработки таких изделий необходимы специализированные станки с большими зонами перемещения, стоимость которых соизмерима с их размерами.

Однако робот может быть размещен на подвижной платформе, длина перемещения которой может быть практически любой. Современные контроллеры промышленных роботов позволяют выполнять интерполяцию движений робота и дополнительно до трех линейных осей перемещения самого робота. Это дает возможность применения промышленного робота практически в неограниченном пространстве. Пример — роботизированная ячейка обработки корпуса лодки (рис. 4).

1

Рис. 4. Обработка корпуса лодки

Обработка корпуса лодки требует не только сложной ориентации инструмента, но и большой зоны перемещения. Применение робота, установленного на подвижном портале, позволяет легко обработать весь корпус лодки. При этом перемещения робота вдоль портала полностью синхронизированы с движениями суставов и позволяют инструменту перемещаться вдоль всего корпуса, поддерживая правильную ориентацию.

Промышленный робот может в одном и том же технологическом процессе использоваться как для захвата заготовки, так и для перемещения ее через инструмент. Так называемая схема «заготовка к инструменту» позволяет реализовать целую технологическую цепочку обработки изделия, а также перемещения изделия в необходимое место для дальнейших операций всего на одном роботе (рис. 5).

Рис. 5. Шлифовка детали по схеме «заготовка к инструменту»

После формирования сиденья стула в термопластавтомате необходимо выполнить обрезку, шлифовку граней и полировку сиденья стула. Все эти операции выполняются последовательно с захватом сиденья роботом, в то время как инструменты находятся на фиксированных позициях.

Программирование промышленных роботов в SprutCAM

Современные контроллеры роботов могут управлять не только дополнительными линейными перемещениями самого робота, но и дополнительными осями вращения рабочего стола с закрепленной на ней заготовкой. Такое решение задает дополнительную степень свободы заготовки и позволяет использовать более компактный робот для обработки заготовки со всех сторон. Естественно, управление дополнительными осями полностью синхронизировано с движениями суставов робота (рис. 6).

Рис. 6. Использование позиционера с поворотной осью

Для сварки бака со всех сторон используется дополнительная поворотная ось, которая управляется синхронно с осями робота и позволяет выполнить операцию сразу со всех сторон.

Таким образом, современные промышленные роботы могут использоваться для многих операций обработки там, где раньше это невозможно было представить: фрезерование (метал, камень, дерево, резина, пластик и др.), шлифовка, полировка, обрезка, снятие заусенцев, резание (плазменное, водяное, лазерное). Такие решения находят применение во многих отраслях промышленности и доступны даже для малого бизнеса, что позволяет ему развиваться и при небольших инвестициях.

Все вышеперечисленные примеры требуют программирования сложных перемещений инструмента и, как следствие, осей робота. При классическом программировании роботов задание перемещений происходит последовательно — от точки к точке. Такой подход очень трудно применить для сложных траекторий, связанных еще и с ориентацией инструмента.

Подобное программирование также потребует много времени, в течение которого робот фактически будет занят и не будет задействован в производственном процессе. Многие производители предоставляют возможность создания программ для робота в G­коде или в близком формате, когда программист учитывает лишь координаты центральной точки инструмента и создает программу в обычном декартовом пространстве, а положение фактических осей робота пересчитывается контроллером. В этом случае можно провести аналогию со станками с ЧПУ, которые имеют схожие возможности.

Простые перемещения запрограммировать таким способом возможно, но когда речь идет о сложном формообразовании или использовании дополнительных осей, то выполнение задачи за разумный промежуток времени становится проблематичным, при этом написание такой программы вручную — довольно сложная задача, а иногда и практически невозможная.

Программирование промышленных роботов в SprutCAM

Логичным выходом из данной ситуации, следуя аналогии с классическими станками, в которых для создания программ обработки сложных форм применяют CAM­системы, является применение CAM для программирования робота. Действительно, создание траектории перемещения инструмента ничем не отличается от создания ее для станка.

Кроме того, CAM­система должна понимать кинематику робота и учитывать все его возможности для позиционирования инструмента, избегать сингулярности и коллизий.

Компания «СПРУТ­Технология» уже более 20 лет занимается разработкой программного обеспечения SprutCAM. Одной из опций данного продукта является возможность      создания программ для промышленных роботов на основе загружаемой 3D­модели изделия.

Используя множество стратегий обработки, программист может задать необходимые траектории перемещения инструмента. SprutCAM, основываясь на реальной кинематике робота, вычислит положение и ориентацию инструмента в каждой точке, рассчитает координаты каждой из осей робота. Детализированная симуляция позволит полностью смоделировать реальное поведение робота, избежать коллизий и увидеть результат обработки. Инструменты по оптимизации положения суставов робота дают возможность наилучшим образом определить оптимальные координаты осей для каждой точки.

Будучи многофункциональной CAM­системой, SprutCAM содержит большое количество стратегий для любых видов обработки: фрезерования (черновые, чистовые, многоосевые операции); резания; сварки (рис. 7).

Как понять, есть ли у ребенка склонность к робототехнике?

Чем быстрее получится определиться с направлением роботехники — конструирование, электроника, программирование — тем лучше. Все три области обширны и требуют отдельного изучения.

Александр Колотов, ведущий специалист STEM-программ в Университете Иннополис: «Если ребенку нравится собирать конструктор, то ему подойдёт конструирование. Если ему интересно изучать, как устроена вещь, то ему понравится заниматься электроникой. Если у ребенка тяга к математике, то его заинтересует программирование».

Когда начинать обучение робототехнике?

Программирование промышленных роботов в SprutCAM

С 8-9 лет ребята уже могут понимать и запоминать, что такое резистор, светодиод, конденсатор, а позже и понятия из школьной физики осваивать с опережением школьной программы. Не важно, станут они специалистами в этой области или нет, полученные знания и навыки точно даром не пропадут.

В 14-15 лет нужно продолжать заниматься математикой, отодвинуть занятия в кружке по робототехнике на второй план и начать изучение программирования более серьезно – разбираться не только в сложных алгоритмах, но и в структурах хранения данных. Далее идут математический базис и знания в алгоритмизации, погружение в теорию механизмов и машин, проектирование электромеханической оснастки робототехнического устройства, реализацию алгоритмов автоматической навигации, алгоритмы компьютерного зрения и машинное обучение.

Александр Колотов: «Если в этот момент познакомить будущего специалиста с основами линейной алгебры, комплексным счислением, теорией вероятности и статистики, то к поступлению в вуз он уже будет хорошо представлять, зачем ему стоит обращать дополнительное внимание на эти предметы при получении высшего образования».

Какие конструкторы выбрать?

Для каждого возраста существуют свои образовательные программы, конструкторы и платформы, различающиеся степенью сложности. Можно найти как зарубежные, так и отечественные продукты. Есть дорогие наборы для робототехники (в районе 30 тыс. руб. и выше), есть и подешевле, совсем простые (в пределах 1-3 тыс. руб.).

Если ребенку 8-11 лет, можно купить конструкторы Lego или Fischertechnik (хотя, конечно, производители имеют предложения как для более младшего, так и для старшего возрастов). Конструктор Lego для робототехники обладает интересными деталями, яркими фигурками, он легок в сборке и снабжен подробной инструкцией.

В 13-14 лет можно начать работать с ТРИК или модулями Arduino, которые, по словам Татьяны Волковой, является практически стандартом в области образовательной робототехники, а также Raspberry. ТРИК сложнее Lego, но легче Arduino и Raspberry Ri. Последние две уже требуют базовых навыков программирования.

Где заниматься робототехникой детям?

Также желательно сразу понять, чего хочется от занятий: участвовать в соревнованиях и бороться за призовые места, участвовать в проектной деятельности или просто заниматься для себя.

Алексей Колотов: «Для серьезных занятий, проектов, участия в соревнованиях нужно выбирать кружки, с небольшими группами по 6—8 человек и тренером, который приводит учеников к призовым местам на соревнованиях, который постоянно сам развивается и дает интересные задачи. Для занятий в виде хобби можно пойти в группы до 20 человек».

Нужно ли изучать роботехнику взрослым?

Если человек решил заниматься этим как хобби, то путь его будет таким же, как у ребенка. Однако понятно, что дальше любительского уровня без профессионального образования (инженера-конструктора, программиста и электронщика) продвигаться вряд ли получится, хотя, конечно, устраиваться на стажировки в компании и упорно грызть гранит нового для вас направления никто не запрещает.

Программирование промышленных роботов в SprutCAM

Олег Кивокурцев: «Взрослому будет проще освоить робототехнику, но важным фактором является время».

Для тех, у кого близкая специальность, но хочется переучиться, также есть разные курсы в помошь. Например, для специалистов по машинному обучению одойдет бесплатный онлайн-курс по вероятностной робототехнике «Искусственный интеллект в робототехнике». Также существуют образовательная программа Intel, просветительский проект «Лекториум», дистанционные курсы ИТМО.

Следует помнить, что серьезная работа отличается от любительского увлечения как минимум стоимостью затрат на оборудование и перечнем поставленных перед работником задач. Одно дело – своими руками собирать самого простого робота, совсем другое – заниматься, например, машинным зрением. Поэтому изучать основы конструирования, программирования и аппаратной инженерии все-таки лучше с ранних лет и впоследствии, если понравилось, поступать в профильный университет.

В какие вузы идти учиться?

— Московский технологический университет (МИРЭА, МГУПИ, МИТХТ);

— Московский государственный технический университет им. Н. Э. Баумана;

— Московский государственный технологический университет «Станкин»;

— Национальный исследовательский университет «МЭИ» (Москва);

— Сколковский институт науки и технологий (Москва);

Программирование промышленных роботов в SprutCAM

— Московский государственный университет путей сообщения Императора Николая II;

— Московский государственный университет пищевых производств;

— Московский государственный университет леса;

— Санкт-Петербургский государственный университет аэрокосмического приборостроения (СГУАП);

— Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО);

— Магнитогорский государственный технический университет;

— Омский Государственный технический университет;

— Саратовский государственный технический университет;

— Университет Иннополис (Республика Татарстан);

робототехника для детей

— Южно-Российский федеральный университет (Новочеркасский ГТУ).

Оцените статью
Радиокоптер.ру
Добавить комментарий