Реле времени 220в для освещения как настроить

Реле времени 220в для освещения как настроить Самолеты

Виды таймеров света

Выбирая прибор, нужно определить необходимую потребителю периодичность его работы.

Для одних целей лучше использовать электронные модели, для других – электромеханические (со всеми свойственными тем и другим преимуществами и недостатками).

Реле времени суточное серии АР 30мин-24ч ТДМСуточные реле времени

Служат для задания определенной последовательности переключения осветительных приборов в течение суток (в одно и то же время каждый день).

Удобны для того, чтобы в нужное время зажигать лампы аквариума, включать подсветку в муляжах видеокамер, гасить ночью неоновую рекламу, включать летними вечерами подсветку фонтанов в парках…

Могут использоваться устройства с обоими принципами действия.

Если минимальный интервал переключения и секундная точность не критичны, то лучше выбирать более простые электромеханические модели.

Недельнеое реле времени FinderНедельные таймеры света

Иногда желаемое время изменения режима работы освещения зависит от дня недели. Например, обесточивание производственных помещений и включение охранных сигнализаций в пятницу должно производиться на час раньше, чем в другие дни. В таких условиях использование суточных таймеров окажется неэффективным.

Выход – установка недельных реле. Их рабочий цикл программируется на 7 дней и повторяется с такой же периодичностью.

Для этих целей применяются, в основном, электронные приборы. В зависимости от модели они отличаются количеством ячеек памяти и возможностью задания большего или меньшего числа параметров.

Если же недельный таймер запрограммировать одинаково на каждый день, то действовать он будет так же, как и суточный.

Астрономические реле времени для управления освещением

При изменении со сменой сезона продолжительности дня разумно скорректировать время эксплуатации осветительных устройств.

С этой функцией справится электронный астрономический таймер, учитывающий длительность светлого времени суток в различные месяцы. Фактически цикл программирования этого прибора составляет 1 год.

Таймеры обратного отсчета времени

Чтобы лампы в подъезде не горели круглосуточно и человек при этом не испытывал дискомфорт, нащупывая в темноте ступени, применяются приборы с обратным отсчетом времени.

Заходя в парадное, жилец включает свет, а электронное реле автоматически отключит его через установленный программой период (1-2 минуты). И удобно, и экономно!

Реле случайного включения-выключения

Для безопасности жилища, когда хозяев нет дома, можно создать имитацию присутствия. С такой задачей справится электронное реле случайного включения-выключения света.

При помощи встроенного генератора случайных чисел оно в произвольной последовательности с разными интервалами гасит и зажигает лампы в комнатах, отпугивая злоумышленников.

Универсальные устройства

Если потребителю необходимо использовать несколько из перечисленных функций, то разумнее выбрать универсальный прибор. В нем может сочетаться, например, способность сезонного изменения программы с возможностью отключения освещения через заданный малый промежуток времени.

Но учтите, что такие устройства дороже, сложнее в настройке и эксплуатации. Поэтому не гонитесь за количеством программ, а выбирайте только те, которые нужны.

Где устанавливать?

Обратите внимание на место установки фотореле.

Поэтому в 90% случаев фотореле размещают над фонарем.

Если позволяет корпус прожектора, то можно даже закрепить непосредственно на нем.

В противном случае вся схема будет работать некорректно и возможны самопроизвольные срабатывания и моргания.

При этом на кратковременные вспышки, например свет фар от проезжающих
машин, реле реагировать не должно, благодаря выставленной на заводе задержке по
времени.

Если нет никакой возможности спрятать датчик как можно дальше от светильника, то хотя бы прикройте корпус со стороны фонаря фанерой или другой непрозрачной перегородкой.

Также некорректная работа возможна по истечении длительной эксплуатации. Связано это с тем, что колпачок фотореле постепенно загрязняется и темнеет, пропуская со временем уже другое количество солнечных лучей через себя.

В результате резко меняются пороги срабатывания. Если это обычная грязь и пыль, то проблема легко решается влажной очисткой. А вот когда чернеет от времени пластик, тут уже поможет только замена защитного колпачка или всего прибора целиком.

Еще часто в таких реле сгорает стабилитрон. Это их главное слабое место.

Также при выборе фотореле обращайте внимание на температуру эксплуатации. К примеру, те же ФР-601 хорошо работают до -25С, а потом у них начинаются проблемы.

В этом случае вам опять поможет обычный выключатель света. Только в схеме
его нужно подключать иначе, чем рассматривалось выше.

Фаза через него должна проходить напрямую к светильнику. Это своего рода
перемычка на тот случай, если датчик не сработал или вышел из строя.

Свет будет зажигаться обычным щелчком выключателя, ровно также, как и все
лампочки у вас дома.

Также в паспортных данных таких фотореле указана степень защиты – IP44.

Это означает, что датчики можно спокойно использовать на улице. Они защищены от брызг и капель дождя.

Однако обращайте внимание на правильное расположение прибора.

У них в защитной крышечке присутствует отверстие, через которое влага запросто может проникать во внутрь устройства.

Импульсное реле для установки в распредкоробку

Помимо щитовых вариантов, есть еще и навесные, для установки за подвесной потолок или непосредственно в распредкоробку.

С их помощью можно организовать перевод освещения в своей
квартире с одноклавишников на импульсники. Меняете в монтажных коробках
выключатели на кнопки и делаете переключения проводов в распаечной коробке.

Вот так выглядит данная схема при подключении импульсного реле, непосредственно в распределительной коробке под потолком.

схема подключения импульсного реле для управления освещением в распределительной коробке под потолком
Схема №3

При этом у вас мало что меняется в электрощитке, а вы получаете отличный вариант управления освещением, аналогичный проходным выключателям.

При подключении в щитовой от стандартного импульсника
сразу нескольких светильников, а не одной лампочки, обязательно монтируйте
кросс-модуль или клеммники.

Заводить по два, три кабеля на одно реле навряд ли
получится (не даст ограничение по толщине провода). Придется их раскидывать по
разным колодкам.

Настройка датчика света

Кроме того, у фотореле есть собственная регулировка чувствительности. Вы
можете вручную задать тот или иной порог срабатывания.

То есть, будет фонарь срабатывать при полной темноте уже ночью, или
вечером, когда только-только начинает смеркаться.

На популярных моделях фотореле от ИЭК ФР-601 и ФР-602 регулятор расположен
в основании и поворачивается в диапазоне от “ ” до “-”.

Если вы его выкрутите на максимальный “ ”, то фотореле будет срабатывать в сумерках или при плохой погоде (небо в тучах). По техническим характеристикам эта регулировка соответствует примерно 50 Люкс.

Если убрать его в крайнее положение на “-”, то датчик сработает только в полной
темноте (освещенность 5 Люкс).

Обычно его устанавливают в среднее положение.

Крутилки эти довольно нежные и при чрезмерном усилии легко ломаются. Так что будьте осторожны, в особенности регулируя чувствительность на морозе.

При этом обратите внимание на важный нюанс.

В комплекте с датчиком всегда идет черный пакетик для проверки
работоспособности. Накрыли им колпак прибора – реле сработало.

Так вот, у многих моделей чувствительные фотоэлементы, расположенные внутри корпуса, могут реагировать помимо освещенности еще и на ультрафиолет в составе солнечных лучей.

Дома за счет остекления 80% УФ-лучей гасится, а на улице – нет. Поэтому настройка в домашних условиях с созданием искусственного затемнения, может отличаться от реальной уличной настройки.

Когда не хватает диапазона, некоторые применяют смекалку и для дополнительной регулировки используют фольгу. Ею обматывают датчик (полностью или наполовину), и тем самым, добиваются изначально большего значения затемнения.

Одна лампа – один выключатель

Самая простая схема состоит из одного осветительного элемента и одноклавишного рубильника.

Теоретически подключение не отличается от описанного выше – нулевая жила идет напрямую от распределительного щита к потребителю, а вот в фазный производится врезка прерывателя. Но практически все выглядит несколько сложнее.

Для подключения такого типа в первую очередь следует определиться с местом монтажа распределительной коробки.

Ее следует установить, как можно ближе к месту установки выключателя, при этом должна исключаться легкость доступа к ней.

От этого напрямую зависит количество проводов, требуемого для создания ветки. Оптимальное ее расположение – под потолком над рубильником.

А далее все просто:

  • Определяем месторасположение осветительного элемента – лампы (к примеру – в центре потолка);
  • Выбираем место установки прерывателя (условно – ниже распределительной коробки);
  • В распределительную коробку заводим проводку, идущую от распределительного щита;
  • По потолку прокладываем проводку (по возможному кратчайшему пути) от патрона лампы и тоже ее заводим в коробку;
  • Остается провести укладку провода от выключателя к распределительной коробке.
  1. Для простоты провод, идущий от щита к коробке, обозначим как «ввод», а от коробки к потребителю – «вывод».
  2. Для схемы с одноклавишным выключателем и одной лампой используются двухжильные провода.
  3. После укладки всей проводки (открытым или закрытым способом) остается только все правильно соединить и для этого важно определить, какая жила — фазная, а какая – нулевая.
  4. Узнать это можно при помощи индикаторной отвертки, сделав соответствующую проверку на выводах из распределительного щита до отключения питания электросети.
  5. Чтобы было понятнее, рассмотрим, как все правильно соединить, используя разный окрас оплетки жил проводки.
  6. К примеру, для создания ветки питания осветительного элемента использовался провод с жилами, окрашенными в коричневый и синий цвета.
  7. При подключении вводного провода к распределительному щиту коричневую жилу соединили с фазным выводом, а синюю – с нулевым.
  8. Зная это, остается только все правильно соединить в распределительной коробке.
  9. Поскольку «ноль» идет напрямую на потребителя, то синюю (нулевую) жилу ввода соединяем с соответствующей по цвету жилой вывода.

Остается включить в схему рубильник. От него к распределительной коробке тоже кинут двухжильный провод, но в этом случае он — две части одной линии (фазной).

Подключение выключателя, через распределительную коробку

Подсоединить источник питания к электропотребителю через одноклавишный выключатель, довольно легко. От электрощитка идёт 2 провода — ноль и фаза. Ноль помечается синим цветом, фаза красным. На картинке 3 — схема выключателя с проводами разных цветов.

Фаза должна проходить через выключатель, при работе которого должен осуществляться разрыв/соединение, именно фазы, а не ноля. Определить, в каком проводе находится фаза легко, при включенной сети, необходимо задеть индикаторной отверткой оба провода, поочередно, там где загорится красный световой индикатор будет фаза.

Если на выключатель будет идти ноль, то проводка, после выключения электричества будет находиться под напряжением, и при замене осветительных элементов можно получить удар током.

В идеале, ток должен поступать к лампочке в такой последовательности — фаза идет на центральный контакт лампочки, ноль идет на цоколь.

Схема выключателя, представленная производителем электроприборов, всегда подразумевает отключение фазы.

Для соединения фазного провода к самому выключатель необходимо:

  • при помощи отвёртки снять клавишу выключателя, и отвернуть винты крепления корпуса;
  • зачистить фазный провод с обоих концов, и при помощи фиксирующий винтов и пресс — шайб, зажать между контактами выключателя.

Провод идущий от электрощитовой должен крепится к нижней части выключателя, а идущий от светильника подсоединить к верхней.

Схема выключателя представляет собой, два провода, идущие от сети с напряжением 220 V, для монтажа нового подключения можно приобрести провода разных цветов, например: красного и синего.

Которые будут проходить через распределительных коробку, причём нуль будет идти на осветительный элемент (электролампа, или несколько ламп, подключенных параллельно), а фаза проходить через выключатель.

При помощи ножа необходимо равномерно снять (зачистить) изоляцию с каждого конца провода, на 3 — 4 см. При помощи плоскогубцев/пассатижей осуществить скрутку проводов друг с другом. Нулевой идущий от сети с нулевым проводом, идущим на лампочку, а фазный провод соединить с проводом идущим от выключателя.

Принцип работы схемы выключателя заключается в том, что при нажатии клавиши выключателя происходит соединение фазного провода, и электричество подаётся к световому источнику. Нулевой провод идёт, без разрыва, на источник.

Завершающим этапом работы будет изоляция электропроводки. Для этого необходимо на соединённые между собой контакты нанести раствор паяльной кислоты или канифоли, затем провести процедуру лужения при помощи паяльника, покрыв припоем соединения.

После служения необходимо заизолировать контакты, обмотав их специальной ПВХ-лентой. Корпус коробки нужно закрыть пластмассовой заглушкой.

Подключение двухклавишного выключателя

  1. Следующей будет схема, в которой задействован двухклавишный выключатель.
  2. Особенностью его конструкции является наличие двух выходных выводов, каждый из которых может соединиться с входным (фазным) выводом независимо друг от друга.
  3. Это позволяет создать две отдельные ветки из одного вводного провода, для управления питанием которых предусмотрена своя клавиша рубильника.
  4. Обычно двухклавишный выключатель применяется для питания двух ламп, но бывают ситуации, когда запитать нужно только один осветительный элемент, то есть создать одну ветку.

В таком случае подключение не отличается от описанной выше. Единственное, следует определиться какая клавиша будет рабочей и к ее выходному выводу подключить фазную жилу.

При таком соединении вторая клавиша будет отключена.

Теперь рассмотрим особенности подключения двух лампочек к такому прерывателю. То есть, по сути, создаем из одного фазной жилы две ветки.

  • Разница от описанной выше схемы сводится к тому, что у нас будет два вывода из коробки (каждый на свою лампу).
  • То есть, в распределительную коробку должно входить 4 провода – вводной, два выводных и от выключателя.
  • Еще важный момент – от прерывателя к распределительной коробке придется прокладывать трехжильный провод.
  • Одна из жил будет подключаться к входному выводу выключателя, а две других — к выходным.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ:  Как выбрать теплый электрический пол

Далее остается все правильно соединить. Здесь для удобства тоже следует использовать цвета оплеток.

К примеру, третьим цветом в трехжильном кабеле будет зеленый.

Соединение делается так:

  • Нулевой провод (синий) от ввода соединяем с двумя выводными соответствующего цвета (должна получиться скрутка, состоящая из трех жил);
  • Вводной фазный провод (коричневый) соединяем с таким же по цвету, ведущим на выключатель;
  • Две остальных жилы кабеля, ведущего на выключатель, нужно соединить с фазными жилами выводов. То есть, синюю нужно соединить с коричневой одной ветки, а зеленую – с коричневой другой ветви.
  1. Читайте по теме: Соединения проводки, как правильно скручивать провода.
  2. Все это более наглядно представлено на схеме.
  3. После соединения все скрутки следует заизолировать и только после этого проверять работоспособность.
  4. Важно знать: Беспроводные выключатели значительно упрощают подключение плафонов с одной лампочкой или большие люстры.

Проводка и схема подключения выключателя

Выключатель света является несложным механическим устройством, основная функция которого – управление освещением, принцип действия — замыкание и размыкание электрической цепи на пути к светильнику.

Чтобы правильно сделать электропроводку для него, необходимо хорошо понимать принцип действия и схему работы выключателей. Для начала рассмотрим схему подключения одноклавишного выключателя (представлена ниже).

Таким образом, из схемы ясно видно, кода в выключателе размыкается фазный провод — светильник не горит, а при замыкании контакта – цепь восстанавливается. Согласно ПУЭ (Правила Устройства Электроустановок) — это единственно верный вариант подключения выключателя, подавать фазу на лампу, а ноль пускать через выключатель запрещено.

Ведь при использовании в выключателе схемы с разрывом нулевого провода, вся проводка остается под напряжением, даже при выключенном свете.

Во время замены лампочки в светильнике, при случайном прикосновении к находящимся под напряжением контактам или при касании токопроводящего корпуса, при пробое изоляции провода, при отсутствии заземления устройства, может произойти поражение человека электрическим током.

Двухклавишный выключатель, используется для управления сразу двумя группами освещения,  например парой разных светильников, или одним светильником включающим в себя сразу несколько ламп, в таком случае одна клавиша отвечает за одну часть ламп, а другая за другую, соответственно при включении сразу обоих клавиш, в светильнике будут гореть все, а при выключении одной из кнопок, останется гореть только часть ламп, что делает более гибким процесс управления освещением, способствует экономию электроэнергии. Схема подключения двухклавишного выключателя представлена ниже.

Если разобрать внимательно схему, становится понятным, что двухклавишный выключатель, можно представить, как два одноклавишных объединенных в единый корпус. По тому же принципу устроен и трехклавишный выключатель, но широкого распространения он не получил, встречается довольно редко.

Практика показывает, что электропроводку осветительной линии лучше разделять с силовой, в случае аварии не произойдет полного обесточивания квартиры. Если неисправность в осветительной сети, то не погаснет настольная лампа, включенная в обычную сеть, и не повредятся дорогостоящие электроприборы.

Кроме того, ремонт освещения можно спокойно делать используя переноску, также будет доступна дрель и другой электроинструмент, для возможности проведения ремонтных работ.

Если же авария будет в силовой линии, то освещение позволит хорошо разглядеть неисправность, особенно это актуально для помещений без естественного освещения, таких как ванная комната, кладовая и т.п.

Для защиты от короткого замыкания в осветительной сети применяются автоматические выключатели, номинал которых рассчитывается индивидуально, в зависимости от будущей потребляемой мощности всех осветительных приборов подключенных к линии. Основная идея применения автоматического выключателя — защита проводки, от поражения человека электрическим током он не защищает. В целом общая схема освещения в квартире выглядит вот так:

Чаще всего, освещение прокладывается трехжильным медным кабелем(проводом), сечением 1,5 мм.кв. марки ВВГ или NYM, с защитным автоматическим выключателем на 10A-16А.

Для подавляющего большинства случаев, это оптимальный вариант построения схемы освещения, с учетом развития энергосберегающих технологий и активного внедрения их в бытовых светильниках, такой вариант электропроводки не потребует замены в течении всего срока своей службы.

Сравнение схемы на проходных выключателях и импульсных реле

Самое главное преимущество всех этих реле заключается в том, что кнопки между собой подключаются параллельно и для этого достаточно двухжильного провода.

В независимости от того, какое количество кнопок вы задействуете – две, три, четыре и т.д.

Это существенно экономит затраты на кабель и упрощает подключение освещения.

Сравните наглядно схему и количество проводов одного и того же помещения, при монтаже проходных выключателей и импульсных реле.

схема сравнения подключения освещения на проходных выключателя и импульсных реле что лучше
Схема на проходныхвыключателях

Как видите, во втором случае присутствует минимум двойная экономия (двухжильный кабель вместо четырехжильного, меньшее количество соединений, больше свободного места в распредкоробках). Функционал освещения в комнате от этого нисколько не пострадал.

Схема подключения выключателя в распределительной коробке

  1. Подключить провод непосредственно к светильнику или выключателю достаточно просто – это не требует объяснения.
  2. В этой статье речь пойдет о том, как в одной распределительной коробке соединить провода от светильника, электрощита и выключателя.
  3. Еще раз хотим напомнить, все работы по присоединению проводов в распредкоробке, подключению выключателя и светильников должны начинаться только после снятия напряжения сети.
Схема подключения выключателя является достаточно простой, но нельзя забывать об одном правиле: подключение фазного провода к светильнику осуществляется через выключатель, то есть фаза всегда должна подключаться на разрыв.

Следуя этому простому правилу, когда выключатель разрывает именно фазу, а не ноль, вы обеспечите безопасность себе, а также сделаете безопасной эксплуатацию электрооборудования в вашей квартире.

Если выключатель будет отключать от нагрузки не фазу, а нулевой провод, то проводка всегда будет оставаться под напряжением, что не только неудобно, но и опасно.

К примеру, вам необходимо заменить лампочку, перегоревшую в люстре. Если выключателем отключается нулевой провод, а не фаза, при случайном прикосновении к токоведущим деталям люстры ил цоколю лампочки вас может поразить электрическим током, так как эти детали находятся под напряжением фазы.

  • Определить фазный провод в распределительной проводке можно с помощью индикаторной отвертки.
  • Опять же, в целях безопасности фазный провод (обычно он красного цвета) необходимо подключать к патрону светильника таким образом, чтобы лампочка подключалась к фазе центральным контактом цоколя.
  • Таким образом уменьшается вероятность того, что человек прикоснется к фазному проводу.
  • Схема подключения выключателя состоит из одной или нескольких электрических лампочек, включенных параллельно, одноклавишного выключателя, распределительной коробки и источника питания 220 вольт.
  • Специализированные магазины предлагают широкий ассортимент проводов для электропроводки, поэтому для фазы и нуля лучше взять провода разных цветов, например, красного и синего.

Итак, с распределительного щита к распределительной коробке подходит двухпроводный кабель. Очень удобно, если он двухцветный, например, фазный провод красный, а нулевой – синий.

Кроме него к распределительной коробке подходит кабель от светильника и кабель от выключателя. Фазный провод от распределительного щита (красного цвета) подключается к красному проводу, идущему к выключателю.

Второй (синий) провод от выключателя подключается к красному проводу, который подключен к нагрузке (светильнику, люстре). В результате мы сделали фазу, которая идет на лампу, коммутируемой.

Нулевой провод (синего цвета) от электрощита подключается к нулевому проводу, который идет к нагрузке (лампочке).

В результате получается, что нулевой провод от распределительной коробки идет прямо на лампочку, а фаза подключена к лампочке через выключатель.

Схема работает следующим образом. При нажатии клавиши выключателя замыкается цепь, и фаза от электрощита подается на светильник, его лампочка начинает светить. Повторным нажатием клавиши электрическая цепь разрывается и лампочка выключается.

После всех соединений места скрутки хорошенько изолируются и аккуратно укладываются. Лучше всего в распределительной коробке провода соединять методом скрутки с пайкой.

Схема подключения розетка — выключатель — лампочка

Вы здесь:

Итак, к примеру, вы начертили схему электропроводки в квартире и проложили провода к распредкоробкам. Теперь необходимо от одной коробки развести кабель к светильникам, розеточной группе и выключателям.

Тут главное не перепутать проводники, чтобы не произошло короткое замыкание. Подсоединение довольно простое:

  • вводная фаза соединяется вместе с фазой розетки и выключателя (в свое время от клавиш фаза дальше идет на лампочку);
  • вводной ноль, собственно как и «земля», соединяется с розеткой и лампой (это может быть люстра или другой светильник).

Лучше всего посмотреть правильность монтажа на предоставленной схеме подключения розетки, лампы и выключателя:

Обращаем Ваше внимание на то, что наиболее качественный способ соединения проводов в распределительной коробке – клеммы WAGO (указаны на картинке). Они недорогие и удобные в использовании.

На видео ниже наглядно демонстрируется, как соединить все 3 элемента вместе:

Вот и вся электрическая схема подключения розетки, выключателя и лампочки в одной распределительной коробке. Надеемся, информация была для Вас доступной и полезной!

  • Схема подключения выключателя, розеток и лампКакие бывают выключатели света?
  • Схема подключения выключателя, розеток и ламп

    Как подключить выключатель света?

  • Схемы датчиков освещения

    Несомненно, для быстрого и легкого ремонта датчика освещенности нужна его схема, по которой сразу станет понятно, что куда подключено и как работает. Ниже привожу парочку схем датчиков и рекомендации по ремонту. Будут вопросы по ремонту – задавайте в комментариях.

    Схема срисована именно с той платы, которая показана по ссылке в начале статьи. Стоит отметить, что производитель постоянно работает над улучшением своего устройства (цена/качество), поэтому схема может меняться.

    Но принцип остается тот же:

    Напряжение питания 220 Вольт поступает через клеммы L (фаза) и N (ноль).

    Фазу и ноль можно “перепутать”, как в принципе можно (но не рекомендуется) выключать ноль, а не фазу в обычных выключателях. Страдает только безопасность и здравый смысл.

    Напряжение выпрямляется диодным мостом (4 диода типа 1N4007), фильтруется (сглаживается) электролитическим конденсатором, и стабилизируется  на уровне 22…24 Вольта стабилитроном типа 1N4748.

    Далее постоянное напряжение питает остальную схему, которая работает так. На выходе резистивного делителя 68к – VR – Фоторезистор формируется напряжение, обратно пропорциональное освещённости. Подстроечный резистор VR с сопротивлением 1 МОм – это та самая “крутилка”, с помощью которой устанавливается желаемый уровень срабатывания.

    Не факт, что в таких схемах ставят фоторезистор, может стоять и фотодиод, но принцип тот же.

    Хотите экономить электроэнергию – ставьте максимальное сопротивление, крутите его по часовой (LUX-), и он будет срабатывать тогда, когда будет уже совсем темно.

    А хотите, чтобы освещение на улице включалось от малейшей тучки – крутите регулятор в другую сторону (LUX ).

    При наступлении темноты освещенность падает, сопротивление фоторезистора растёт, напряжение на базе транзистора растёт. И достигает такого уровня, что транзистор открывается, через коллектор протекает ток, достаточный для включения реле КА. Реле своими контактами включает нагрузку, которая подключается через вывод LOAD.

    При этом загорается светодиод, а конденсатор 47 мкФ в цепи базы сглаживает все процессы, чтобы реле слишком быстро не щёлкало, например, если его перекрывает ветка дерева, колеблющаяся от ветра.

    В заключение – схема более мощной модели, LXP-03:

    Тут схема та же, отличия перечислю:

    • Схема питания ограничивает напряжение в фазной цепи.
    • Диодный мост с фильтром – такой же как и в предыдущей схеме, я неудачно ее изобразил.
    • вместо одного стабилитрона – два последовательно, но напряжение питания схемы – то же, 24В.
    • Используется составная схема на двух комплиментарных транзисторах, поскольку реле более мощное, ток его катушки больше.

    Зная принцип работы схемы, её легко отремонтировать. А если хотите подробнее разобраться в ремонте, то в статье про ремонт датчика движения пошагово расписана методика и философия ремонта подобных устройств.

    Всё, всем удачи!

    Схемы управления освещением » сайт для электриков – статьи, советы, примеры, схемы

    Электрик Инфо » Интересные электротехнические новинки, Электричество в доме » Схемы управления освещением
    14 декабря 2023
    Количество просмотров: 241476
    Комментарии к статье: 12

    В статье приведены схемы управления освещением с использованием проходных и крестовых переключателей, бистабильных реле, светорегуляторов, диммеров, фотореле, таймеров и инфракрасных датчиков движения.

    Схемы управления освещением уже неоднократно рассматривалось в литературе и на страницах различных интернет-сайтов электротехнической направленности. Поэтому, здесь мы постараемся в общих чертах охватить различные существующие решения.

    Простейшие схемы управления одно- или двухклавишным выключателем всем известны и, следовательно, мало кому интересны, поэтому перейдём сразу к рассмотрению схем управлением освещения из нескольких мест.

    Начнём с конкретной простой ситуации – допустим, у вас в загородном доме два этажа. Вечером вы поднимаетесь по лестнице на второй этаж. Естественно, нужно включить свет на лестнице. Включаем на первом этаже. Поднимаемся на второй этаж. Теперь свет на лестнице нужно отключить.

    А как это сделать, если выключатель установлен на первом этаже? Естественно, напрашивается очевидный ответ – управление светильниками должно осуществляться из двух мест – с первого и второго этажа.

    На первый взгляд ничего сложного – достаточно установить на каждом этаже по выключателю, которые включены параллельно и управлять ими независимо друг от друга. Но такая схема работать по нужному нам алгоритму не будет – с её помощью можно включить свет с любого из двух выключателей, но отключить – только с того, с которого было сделано включение – т.к. один выключатель во включенном состоянии заблокирует работу другого. Следовательно, для рассмотренной ситуации с лестницей, данная схема абсолютно неприемлема.

    Для реализации управлением освещением из двух мест необходимы специальные выключатели, которые называются проходными. Вообще, в данной ситуации термин «выключатель» неправильный. Это «переключатель», т.к. он имеет три контакта – один подвижный и два неподвижных. В зависимости от положения клавиши переключателя подвижный контакт замыкается либо с одним, либо с другим неподвижным контактом. Но что бы не запутаться в терминах, будем называть этот переключатель проходным выключателем.

    Включив два таких выключателя по схеме, приведённой на рисунке 1, мы получим возможность управлять одним светильником (или несколькими одновременно, если они соединены параллельно) из двух точек независимо друг от друга. Подвижными (переключающими) контактом на этой схеме является контакты, выделенные синим цветом.

    Рис.1. Управление одним светильником из двух точек.

    Особенностью проходных выключателей является то, что они не имеют строгого положения клавиши. Если в обычном выключателе, как правило, включенным положением является нажатие вверх, а выключение вниз, то в проходном выключателе положение «включено-выключено» будет зависеть от положения второго выключателя. Если допустим, вы включили свет с первого выключателя, «щёлкнув» его вверх, а со второго отключили, то в следующий раз при включении света первым выключателем, его необходимо «щёлкнуть» вниз.

    Помимо одиночных, существуют сдвоенные проходные выключатели. Они позволяют управлять из двух мест двумя независимыми светильниками. Это фактически два одиночных проходных выключателя в одном корпусе. Схема соединения таких выключателей, показана на рисунке 2.

    Рис.2. Управление двумя светильниками из двух точек.

    Но иногда ситуация требует управления не из двух, а из трёх и более мест. Тут уже одними проходными выключателями не обойтись. Схему необходимо дополнить четырёхконтактыми переключателями – так называемыми крестовыми выключателями.

    Крестовой выключатель имеет четыре контакта и более сложную конструкцию, по сравнению с проходным выключателем. Он устанавливается «в середине» схемы – т.е. первый и последний выключатели в цепи освещения будут проходными, а все во всех «промежуточных» точках должны быть установлены крестовые выключатели. В качестве примера на рисунке 3 показана схема управления светильником из трёх точек.

    Рис.3. Управление светильником из трёх точек.

    Схема управления с помощью проходных и крестовых выключателей является не самым оптимальным решением, когда нужно управлять освещением из трёх и более мест. Такую схему управления значительно проще организовать с помощью двустабильных , или как их по другому называют, бистабильных реле.

    Данное реле представляет собой электронную схему триггера – устройства с двумя устойчивыми состояниями и управляется кратковременным импульсом, подаваемым на его вход. Это позволяет использовать для управления освещением не фиксируемые выключатели (кнопки). Все кнопки включаются параллельно друг другу, что позволяет значительно упростить схему и соответственно монтаж освещения. Обычно такое реле представляет собой стандартный 17,5 мм модуль, устанавливаемый на DIN – рейку и монтируемый в распределительном шкафу (рисунок 4)

    Рис.4. Внешний вид двустабильного реле.

    Показанное в качестве примера двустабильное реле, в зависимости от модификации, может иметь один нормально-разомкнутый контакт, два нормально-разомкнутых контакта или нормально-разомкнутый и нормально-замкнутый контакт. Такие реле могут работать как в сети 230В, так и при напряжении 24В. Схемы включения двустабильного реле показаны на рисунке 5.

    Рис.5. Схемы включения двустабильного реле.

    Для реализации схемы управления освещением на двустабильном реле наиболее удобно задействовать его нормально-разомкнутый контакт. В приведённых обеих схемах таким контактом является контакт, имеющий выходы 1-2. Количество кнопок управления может быть любым, и все они включены параллельно.

    Первое нажатие на любую кнопку подаст управляющий уровень напряжения на вход А1, что вызовет включение реле, замыкание контакта и соответственно включение освещения, второе нажатие – отключение и так далее по кругу.

    Преимущество данной схемы от рассмотренной выше схемы на проходных выключателях – отсутствие необходимости применения крестовых переключателей и значительно более простой монтаж системы освещения. Недостаток – применение специального двустабильного реле. Но при наличии такого реле, данная схема является наиболее оптимальной как в плане монтажа, так и последующего отыскания неисправностей.

    Отдельно необходимо остановиться на таких устройствах, как светорегуляторы (диммеры). Они позволяют управлять яркостью свечения лампы. Существую регуляторы для различных типов светильников – с лампами накаливания, с люминесцентными лампами, галогенными и т.д. Для примера приведём внешний вид и схему включения дистанционно управляемого из разных точек диммера для ламп накаливания (рисунок 6).

    Как видно из схемы, включение кнопок управления в этом диммере выполняется аналогично схеме управления посредством двустабильного реле – все они включены параллельно и их может быть любое количество. Для обеспечения защиты диммер включается через автоматический выключатель. Суммарная мощность ламп может составлять 600 Вт. Схема включения для люминесцентных ламп аналогична, отличие только в том, что используется другой тип регулятора.

    Рис.6. Схема включения дистанционно управляемого диммера.

    Такой тип диммера монтируется в распределительном шкафу на DIN рейку. Однако в большинстве случаев в быту используют диммеры, которые устанавливаются взамен существующих выключателей. Они имеют посадочные размеры, как и стандартный выключатель. Внешний вид диммера показан на рисунке 7.

    Регулировка осуществляется вращением ручки потенциометра – при вращении по часовой стрелке яркость лампы возрастает, против часовой стрелки – уменьшается. Иногда управление производится с помощью кнопок. Силовым регулирующим элементом в схеме диммера является симистор (триак).

    Рис.7. Диммер.

    При замене обычных выключателей диммерами не следует забывать один очень важный нюанс – существуют диммеры, которые включаются в разрыв питания светильника, а некоторые требуют постоянно наличия питания 230В.

    В первом случае никаких вопросов по замене не возникает – диммер просто включается взамен выключателя. Во втором случае необходимо в посадочную коробку привести дополнительный нулевой провод – для обеспечения полного питания 230В. Поэтому, если не производится реконструкция электропроводки, то первый способ явно предпочтительнее. Схемы включения различных типов диммеров показаны на рисунке 8.

    Рис.8. Включение различных типов диммеров.

    Рассмотренные выше способы управления освещением при всём их удобстве, имеют один момент, а может для кого-то и недостаток – для включения или отключения освещения необходимо подойти к выключателю. Не привязываться к выключателю и одновременно регулировать яркость позволяют электронные дистанционные выключатели. Они бывают как с управлением на инфракрасных лучах (ИК), где в качестве пульта управления применяется пульт от любой бытовой техники, так и с управлением по радиоканалу.

    В качестве примера выключателя, управляемого по ИК-каналу, можно назвать широко известный выключатель «Сапфир» (рисунок 9). Он позволяет как включать/выключать свет, так и плавно регулировать яркость свечения лампы. При всех его достоинствах, в качестве недостатка необходимо отметить то, что управлять этим выключателем можно только в пределах прямой видимости, на сколько хватит «дальнобойности» пульта управления – обычно, не более восьми метров.

    Рис.9. Внешний вид выключателя «Сапфир».

    Выключатели, работающие по радиоканалу, лишены такого недостатка, как управление только в пределах прямой видимости. Радиосигнал может проходить и через различные препятствия – стены, перекрытия и т.д. До определённой степени, конечно. В таких выключателях, как правило, используют частоту 433 или 492 МГц, на которые не требуется получения разрешения в органах радионадзора. Выходная мощность у передатчиков для таких устройств не более 10мВт.

    Дистанционно управляемые выключатели (как по ИК, так и по радиоканалу), могут быть как одноканальными (позволяющие управлять только одной нагрузкой), так и многоканальными. Многоканальные выключатели удобны тем, что их можно разместить, например, в распределительном шкафу и свести объекты управления в одну точку. Одноканальные выключатели размещают обычно в распределительных коробках линии освещения.

    Пример реализации одноканального радиовыключателя, монтируемого в распределительную коробку, показан на рисунке 10. В обязательном порядке, как в одноканальных, так и в многоканальных выключателях предусматривается местное (ручное) управление на случай выхода из строя пульта управления.

    Рис.10. Одноканальный радиовыключатель.

    Радиоуправляемые выключатели, хотя и имеют значительно больший радиус действия, чем выключатели, построенные на инфракрасных лучах, однако и он ограничен – как правило, не более 100 метров (хотя бывают разные варианты).

    Но что делать, если нужно включить освещение или любую другую нагрузку, находясь за десятки и сотни километров от управляемого объекта? А это не такая уж и бесполезная функция – например, удалённое включение освещение в загородном доме позволит создать эффект присутствия хозяев, в зимнее время включить подогрев тёплых полов, что бы к вашему приезду в доме было тепло, летом включить кондиционер и т.д.

    Вот здесь на помощь и приходят системы, управляемые дистанционно по линиям сотовой связи или через Интернет. Такие устройства сейчас довольно широко представлены на рынке. Автор данной статьи в своё время так же самостоятельно разрабатывал четырёхканальный «выключатель» по GSM. Его внешний вид показан на рисунке 11.

    Рис.11. Четырёхканальное устройство управления и контроля.

    Это устройство, получившее название многофункционального устройства управления и контроля, имеет встроенный модуль GSM. Для его использования достаточно подключить к выходным каналам требуемые нагрузки и вставить активированную SIM карту.

    Доступ к управлению происходит следующим образом – производится дозвон на номер установленной SIM карты, после запрограммированного числа посылок вызовов устройство подключается к линии и необходимо ввести с клавиатуры телефона установленный пароль. Если пароль неправильный, устройство отключается от линии, если правильный – можно управлять (включить или отключить) любой из четырёх нагрузок.

    Данный проект является некоммерческим, вся документация о нём, в том числе и прошивка микроконтроллера, выложены в свободном доступе и любой желающий, имеющий определённые познания в области электроники может изготовить его самостоятельно.

    Все приведённые выше схемы управления имеют один общий признак – они управляются по команде человека, другими словами – оператора. Но есть целый класс устройств, которые могут работать без непосредственного участия человека. К ним относятся реле управления по команде с датчика освещённости, датчика движения и по установленному ранее временному алгоритму.

    Реле с датчиками освещённости (фотореле) часто используют для управления уличным освещением – при наступлении темноты они включают светильники наружного освещения. Порог срабатывания таких реле можно регулировать в зависимости от уровня освещённости. Внешний вид фотореле вместе с датчиком показан на рисунке 12. Оно содержит один управляющий контакт, который позволяет управлять светильником непосредственно с реле, или, при больших нагрузках, через дополнительное силовое реле (контактор).

    Рис.12. Фотореле с датчиком.

    Реле, которые управляют нагрузкой по заданному временному алгоритму, называются программируемыми таймерами. В них прописывается нужное время включения и отключения нагрузки. Иногда таймеры интегрируют вместе с фотореле.

    Для чего это нужно? Допустим, нам нужно включить наружное освещение по наступлении темноты, затем с часа ночи его отключить, в четыре утра снова включить и отключить утром, когда становится светло. Для этого фотореле и таймер собирают в последовательную цепь. При наступлении темноты фотореле включит светильник, но в час ночи таймер разорвёт цепь и светильник погаснет. Затем в четыре утра таймер снова соберёт цепь – светильник включится. И наконец, когда станет светло, светильник выключит уже фотореле.

    В зависимости от модификации таймера, в нём можно запрограммировать события от суток до одного года. Разновидностью таких таймеров являются астрономические реле. Как правило, эти реле тоже используют для управления наружным освещением – в качестве входной величины в него вводятся географические координаты местности, а устройство уже на основании этих сведений само рассчитывает, когда нужно включить или отключить освещение. Внешний вид некоторых типов таймеров приведён на рисунке 13.

    Рис.13. Внешний вид некоторых типов программируемых таймеров.

    И в заключение, остановимся на управлении освещением с помощью инфракрасных датчиков движения. Похожие датчики применяются в охранных системах для фиксации наличия человека в охраняемой зоне. Только там датчики предназначены для того, что бы при их срабатывании охранная система отправила тревожный сигнал на пульт вневедомственной охраны.

    В нашем случае срабатывание датчика должно включить освещение на определённое время. Если по прошествии этого времени активности (движения) в контролируемой зоне не наблюдается, освещение выключается. В противном случае, освещение остаётся включенным на ещё такой же временной интервал.

    Использование светильников, управляемых датчиками движения очень удобно в местах общего пользования – на лестничных клетках и коридорах многоквартирных домов. Отлично подходят такие светильники и для наружного освещения, например, во дворе дома. Они позволяют не только удобно управлять освещением, но и экономить электроэнергию, что в наше время довольно актуально. Внешний вид светильника с интегрированным ИК-датчиком показан на рисунке 14.

    Рис.14. Внешний вид светильника с ИК-датчиком.

    Конечно, в рамках одной небольшой статьи невозможно охватить все существующие современные способы управления освещением. В ней я попробовал рассмотреть наиболее традиционные и часто используемые.

    Смотрите также: Принципиальные и монтажные схемы освещения в квартире и доме

    Каталог электротехнической продукции – розетки и выключатели различных производителей

    Михаил Тихончук

    Установка

    Выбирая прибор, подумайте, каким целям он будет служить, и как его устанавливать.
    Розеточные реле времени
    Розеточные реле

    Применение розеточных реле возможно с осветительными приборами, имеющими стандартную вилку для подключения к бытовой сети переменного тока.

    Неоспоримые преимущества этого вида оборудования:

    • компактность;
    • мобильность;
    • простота установки и эксплуатации;
    • монтаж без соединительных проводов.

    Однако они непригодны для управления системой освещения квартиры в целом и не рассчитаны на значительную мощность, в этом случае можно обратить внимание на программируемые розетки с Wi-Fi.

    Стационарное реле времени OMRON-IA H3CR-AСтационарные таймеры

    Если перед потребителем стоит задача управлять не отдельными устройствами, а осветительной сетью дома или предприятия, то нужно выбирать стационарные приборы.

    Они монтируются в монтажную коробку или на DIN рейку распределительного щита. Требует дополнительных, в сравнении с розеточными, усилий и материальных затрат.

    Зато обеспечивает единство управления системой и возможность подключения больших мощностей.

    Характеристики таймеров света

    Таймер DT электронный 1507500 BrennenstuhlЭлектронное реле времени для света

    Это прибор, управляемый микропроцессором. Программируется кнопками, расположенными на лицевой панели.

    Показания выводятся на жидкокристаллический дисплей. Питающий элемент – батарея либо аккумулятор.

    Его преимущества:

    • возможность задания малых интервалов переключения (до 1 минуты);
    • высокая точность хода (отклонение < 1 сек/сут);
    • сохранение программы при отключении электроэнергии;
    • наглядность заданных показателей;
    • широкий выбор моделей, отвечающих любым требованиям по периодичности работы, способу монтажа (в электрощит и в розетку) и условиям эксплуатации.

    Как недостаток можно отметить только более сложное программирование и потенциальные проблемы при исчерпании ресурса аккумулятора.

    Любые задачи по управлению освещением решаются при помощи электронных реле.

    Электромеханическое реле времени NAPA-W VEMER ИталияЭлектромеханическое реле времени

    Это устройство, в котором механизм отсчета времени работает посредством синхронного электродвигателя, питающегося от сети.

    Используется с суточной и реже – с недельной периодичностью работы.

    Его программируют при помощи расположенных на лицевой панели рычажков и градуированного колеса.

    Существуют мобильные розеточные и стационарные, монтируемые на DIN рейку или в монтажную коробку, модели.

    Преимущество электромеханических устройств – простота настройки, но по ряду параметров они уступают электронным:

    • ниже точность хода;
    • выше минимальный интервал переключения (10-15 минут);
    • после отключения электропитания у моделей, не оборудованных аккумулятором или батареей, происходит сбой в программе.

    Характерная неисправность для этого вида реле – выход из строя вследствие износа шестерен регулировочного колеса.

    Самостоятельному устранению поломка не подлежит – придется обращаться в сервис.

    Централизованное управление освещением одной кнопкой

    На моделях с так называемым центральным или централизованным управлением, помимо вышеперечисленных, есть еще дополнительные клеммы ON и OFF.

    При подаче напряжения на них, реле принудительно либо
    отключается (OFF), либо включается (ON).

    Они используются при сборке схемы с мастер кнопкой или мастер выключателем. То есть, выходя из дома, всего с одной кнопки вы централизованно можете отключить свет на всех этажах и во всех комнатах.

    Вот такая схема собранная на несколько групповых светильников, подключенных от разных импульсных реле. Заметьте, что в данном случае все реле должны быть именно с центральным управлением, иначе схема работать не будет.

    схема подключения импульсного реле для управления освещением с мастер кнопкой или выключателем
    Схема №2 – с центральным управлением

    У имульсников ABB блок
    центрального управления можно докупить отдельно и присоединить его с левой
    стороны от реле E290.

    Только будьте предельно внимательны при сборке такой схемы управления в трехфазном щите на 380В.

    При наличии трехфазки, некоторые группы освещения запитывают от разных фаз, дабы равномерно распределить нагрузку.

    В этом случае нельзя все контакты OFF и ON на релюшках соединять перемычками, как это зачастую и делают в однофазных щитках. Придется выносить все цепи управления на отдельный автомат и именно с него подавать одноименную фазу для вкл-выкл всех импульсных реле одновременно.

    И то, такое возможно при использовании эл.механических моделей.
    Для электронных придется делать развязку через промежуточные реле.

    Смотрите про коптеры:  Моделирование электролета на основе аэродинамических законов физики - Тринадцатая олимпиада (2015/16 уч.год) - Архив работ - Каталог статей - Олимпиада по истории авиации и воздухопл
    Оцените статью
    Радиокоптер.ру
    Добавить комментарий