Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы

Notice: Undefined index: HTTP_ACCEPT in /home/n/newavtjc/radiocopter.ru/public_html/wp-content/plugins/realbig-media/textEditing.php on line 823

Аппаратура радиоуправления моделями

Описываемая аппаратура может быть использована для управления авиа- и судомоделями по радио в диапазоне частот 27,6—28 Мгц. Дальность действия аппаратуры в воздухе до 3—5 км, на земле — до 400—500.

Описываемая аппаратура может быть использована для управления авиа- и судомоделями по радио в диапазоне частот 27,6—28 Мгц. Дальность действия аппаратуры в воздухе до 3—5 км, на земле — до 400—500 м. Аппаратура испытана на модели ракетоносца на гусеничном ходу, получившей приз на 22-й Всесоюзной выставке радиолюбителей-конструкторов.

Передатчик

Принципиальная схема передатчика показана на рис. 43. Задающий генератор собран на транзисторе Т1. Его колебательный контур L1C2 настроен на частоту 13,8—14 Мгц. Колебания высокой частоты через катушку связи L2 подаются на базу транзистора Т2 каскада удвоения частоты. Смещение на базе транзистора автоматическое, за счет детектирования токов высокой частоты эмиттерным переходом. Колебательный контур L3CC6 в цепи коллектора настроен на частоту 27,6—28 Мгц. Напряжение высокой частоты с этого контура подается на эмиттер транзистора Т3 выходного каскада передатчика.

В коллекторную цепь транзистора Т3 включен выходной контур L5C9, настроенный на частоту 27,6—28 Мгц. Связь антенны с выходным контуром емкостная, через конденсатор С10. Для увеличения отдачи энергии в антенну применена «удлинительная» катушка L6, которая вместе с антенной настраивается в резонанс с частотою выходного контура передатчика.

Антенной служит телескопическая антенна длиной 1 м от переносных приемников.

Модулятор на транзисторах Т4 и Т5 представляет собой генератор звуковых частот. Включая в цепь базы транзистора Т5 при помощи кнопок Кн—Кн4 конденсаторы С12—C15, можно получить четыре фиксированные звуковые частоты: 4 500, 4 000, 3500, 3000 гц, необходимые для подачи команд.

Смотрите про коптеры:  Радиоуправление 27 мгц схема

Аппаратура радиоуправления моделями

Рис. 43. Схема передатчика радиоуправления моделями.

В коллекторную цепь транзистора Г5 выходного каскада модулятора включен трансформатор Тр1. Напряжение звуковой частоты с вторичной обмоткой этого трансформатора подается в цепь базы Транзистора Т3 выходного каскада передатчика, осуществляя модуляцию несущей. При таком подключении модулятора к передатчику мощность модулятора может быть небольшая, а глубина модуляции выходного каскада достигает 70—85%.

Выходная мощность передатчика 1,5—2 вт.

Конструкция и детали. Детали передатчика монтируют на плате из листового гетинакса или стеклотекстолита размерами 130 X Х120 мм. Монтажную плату вместе с батареей питания (4 шт. Л-0,5) размещают в металлическом корпусе размерами 200X140X55 мм.

Расположение основных деталей на плате показано на рис. 44, а внешний вид передатчика со стороны передней панели — на рис. 45.

Данные катушек и дросселей передатчика приведены в табл. 4.

Транзисторы П403 можно заменить транзисторами П420— П423, П416, а МП40 — транзисторами МП39, МП41, МП42.

Аппаратура радиоуправления моделями

Рис. 44. Расположение деталей на панели передатчика.

В качестве выходного трансформатора модулятора применен согласующий трансформатор От карманного приемника, вторичная обмотка которого используется как модулирующая. Конденсаторы Са, С3, С6 и С9 типа КПК-1. Все резисторы, кроме R5, типа УЛМ или МЛТ, Резистор R3 проволочный (2,5 мм провода ПЭЛ 0,1), намотан на корпусе резистора ВС-0,25 сопротивлением не менее 10 ком. Кнопки Kн1—Kн4 любого типа.

Настройку передатчика начинают с проверки задающего генератора. При включении питания миллиамперметр в коллекторной цепи транзистора Т1 должен показывать ток в пределах 5—12 ма, а при замыкании катушки L1 уменьшиться на 2—3 ма. Если при замыкании катушки ток не изменяется, что указывает на то, что задающий генератор не работает, генерации добиваются подстроеч-ным конденсатором С3.

Частоту задающего генератора проверяют с помощью ГИР, она должна быть в пределах 13,8—14 Мгц. Изменением емкости конденсатора С3 добиваются, чтобы ток, потребляемый этим каскадом от батареи, был в пределах 10—12 ма. Такой ток соответствует наилучшему режиму работы задающего генератора.

Аппаратура радиоуправления моделями

Рис, 45. Расположение органов уп равления на панели передатчика.

Контур L3C5С6 конденсатором С5 настраивают на частоту 27,6—28 Мгц. Момент резонанса можно определить по ГИР, настроенному на эту частоту, поднеся его катушку к катушке L3. В момент резонанса стрелка прибора должна максимально отклониться. Можно также воспользоваться простейшим высокочастотным пробником — витком провода ПЭВ 0,8, замкнутым на лампочку накаливания 25 в X 0,075 а. Если виток пробника надеть на катушку Л3, то в момент резонанса лампочка должна слабо светиться. Не исключено, что для точной настройки контура L3C5C6 на частоту 27,6—28 Мгц придется подбирать емкость конденсатора С5.

После этого настраивают выходной каскад передатчика. При настройке контура L5C9 конденсатором С9 на частоту 27,6—28 Мгц в момент резонанса миллиамперметр в цепи этого контура должен показывать минимальный ток, а лампочка высокочастотного пробника, поднесенного к катушке L5 ярко светиться.

Аппаратура радиоуправления моделями

Аппаратура радиоуправления моделями

Для настройки антенны потребуется простейший волномер, схема которого показана на рис. 46.

Для контроля настройки антенны в резонанс с выходным каскадом передатчика параллельно дросселю Др2 подключают миллиамперметр на ток до 15 ма. Волномер, снабженный антенной в виде отрезка провода длиной 1 м, настроенный на частоту 27,6—28 Мгц, относят от передатчика на такое расстояние, при котором стрелка его прибора находится в середине шкалы. Поворачивая сердечник «удлинительной» катушки L6, добиваются наибольшего отклонения стрелки прибора волномера. Ток, потребляемый транзистором Тз при настройке антенны в резонанс с частотой выходного каскада передатчика, должен увеличиться в 1,5—2 раза.

При настройке антенны может понадобиться подстройка выходного контура передатчика конденсатором С9.

Последним проверяют работу модулятора. При нажатии любой из кнопок в телефонах, включенных параллельно вторичной обмотке Тр1, должен появиться звук. Если звука нет, то проверяют детали и монтаж модулятора. Одной из ошибок в модуляторе может быть неправильная полярность включения диода Д1.

Для проверки частоты модулятора к обмотке II трансформатора Тр1 параллельно телефонам через конденсатор емкостью 0,01 подключают звуковой генератор. Нажав кнопку Кн1 изменяют частоту генератора, подгоняя ее под частоту модулятора. При равенстве частот генератора и модулятора в телефонах слышен звук одного тона.

Частота модулятора при нажатии кнопки Kh1 должна быть близкой к 3 000 гц. Подогнать эту частоту модулятора можно подбором емкости конденсатора С12.

Точно так же настраивают модулятор на другие командные частоты; при нажатии кнопки Кн2- на частоту 3 500 гц, кнопки Кн3 — на частоту 4 500 гц и кнопки Кн4 — на частоту 4 000 гц.

При нажатии любой из кнопок модулятора ток выходного каскада передатчика должен возрастать на 20—30%.

Настроенный передатчик вставляют в металлический корпус.

Приемник

Принципиальная схема приемника радиоуправляемой модели, рассчитанного на совместную работу с описанным передатчиком, показана на рис. 47. Первый каскад приемника является сверхрегенеративным детектором. После детектирования сигнал усиливается трех-каскадным усилителем низкой частоты и подается на вход блока электронных реле дешифратора.

Преимущество сверхрегенератора — его большая чувствительность при малом числе деталей. Так как несущая командного сигнала не стабилизируется кварцем, то незначительный уход частоты передатчика существенно не скажется на работе приемника.

Сверхрегенеративный детектор собран на транзисторе Т1. Обратная положительная связь между коллекторной и базовой цепями осуществляется через конденсатор С3. По высокой частоте нагрузкой каскада служит колебательный контур L1C3. Дроссель Др1 преграждает путь токам высокой частоты в Усилитель низкой частоты.

Резистор R3 является нагрузкой детектора по низкой частоте. Одновременно на нем выделяется напряжение частоты гашения сверхрегенератора, которому путь к усилителю низкой частоты преграждает фильтр C6R4C7.

С выхода усилителя низкой частоты сигнал через конденсатор С12 и резисторы R13 —R16 поступает на электронные реле дешифратора. Если на колебательный контур электронного реле, например на контур L2C13, подать переменное напряжение частотой 4 500 гц, причем колебательный контур настроен на эту частоту, на нем выделится максимальное напряжение этой частоты. При этом между базой и эмиттером транзистора Т5 потечет переменный ток, частично выпрямленный диодом Д1. Создающееся на диоде напряжение со знаком минус подается на базу, а плюс— на эмиттер, обеспечивая необходимое смещение рабочей точки транзистора. Усиленный транзистором переменный ток создает на обмотке реле Р1 падение переменного напряжения, которое через конденсатор С14 подается в колебательный контур. Чем больше напряжение на контуре, тем больше будет Выпрямляемое диодом напряжение, тем отрицательнее напряжение на базе и больше ток через транзистор. Наступает насыщение транзистора. В этот момент напряжение источника питания почти полностью оказывается приложенным к обмотке реле. При этом реле срабатывает, его контакты замыкаются и включают ходовой электродвигатель.

Точно так же работают три других электронных реле на транзи-сторах Т6—Т8, только их контуры настроены на другие командные частоты передатчика: контуры L3C15—на частоту 4 000 гц контур L4C7 на частоту 3500 гц, контур L5C20 —на частоту 3 000 гц. Резисторы R13—R16 устраняют взаимосвязь между контурами реле.

Аппаратура радиоуправления моделями

Рис. 47. Схема приемной аппаратуры радиоуправления моделями.

В приемной аппаратуре три исполнительных электродвигателя. При замыкании контактов P1 когда включается электродвигатель ЭД1 модель будет поворачиваться вправо или влево. При замыкании контактов Р2, когда включается электродвигатель ЭД2, модель делает поворот в другую сторону, когда же сработает реле Р4 и его контакты включат два электродвигателя — ЭД1 и ЭД2, модель будет двигаться прямо. Электродвигатель ЭД2 предназначен для выполнения любой другой команды. В модели ракетоносца, где работала эта аппаратура, он применялся для подъема ракет. Выключатели Bki и Вк2 для этого случая являются конечными выключателями, разрывающими цепь питания электродвигателя при полном подъеме или опускании ракеты.

Электролитические конденсаторы С21—С26 снижают уровень помех приемнику, создаваемых работающими электродвигателями.

Электродвигатели питаются от двух соединенных параллельно батарей КБС-Л-0,5.

Детали и конструкция. Детали приемника и электронных реле дешифратора смонтированы на плате размерами 135X80 мм (рис. 48).

Катушка L1 сверхрегенеративного детектора намотана на полистироловом каркасе диаметром 6 мм с алюминиевым сердечником диаметром 4 мм. Катушка содержит 12 витков провода ПЭЛ 0,6, длина намотки 10 мм.

Дроссели Др1 и Др2 имеют одинаковые конструкции: на корпус резистора ВС-0,25 сопротивлением не менее 100 ком намотаны четыре секции из 2,5 м провода ПЭЛ 0,12.

В высокочастотной части приемника следует применить конденсаторы типа КТК или КДК. Контурные катушки электронных реле намотаны проводом ПЭЛ 0,1 на четырехсекционных каркасах с сердечниками СЦР-1 (каркасы фильтров промежуточной частоты радиовещательных приемников). Катушки L2 и L3 содержат по 1 200 витков, L4— 1 400 витков, L5 — 1 500 витков. Электромагнитные реле Р1 Р2, Р4 типа РЭС-10 или, в крайнем случае, типа РСМ, Р3 — типа РЭС-6. Сопротивление обмоток реле должно быть в пределах 400—600 ом. Контактные пружины нужно так отрегулировать, чтобы реле надежно срабатывали при токе 10—14 ма.

Монтаж приемника должен быть механически прочным.

Аппаратура радиоуправления моделями

Рис. 48. Расположение деталей приемника и дешифратора на монтажной плате.

Настройку приемника начинают с проверки усилителя низкой частоты. На вход усилителя параллельно конденсатору С7 через резистор сопротивлением 100 ком подают сигнал звукового генератора частотой 1 000 гц, а к выходу усилителя (между плюсовым проводником и положительной обкладкой конденсатора С12) подключают высокоомные телефоны. Изменяя сопротивление резистора R6, добиваются наибольшего неискаженного усиления сигнала генератора. При отключении звукового генератора в телефонах должен прослушиваться характерный для сверхрегенеративного детектора шум, напоминающий звук примуса. Подбирая номинал резистора R1 добиваются максимальной громкости этого шума. Далее по сигналу генератора высокой частоты контур L1C3 приемника настраивают на частоту 27,8 Мгц сердечником катушки L1. Если частота контура значительно отличается от сигнала генератора, то сжимают или, наоборот, раздвигают витки катушки, добиваясь, чтобы настройка контура на частоту 27,8 Мгц была при среднем положении сердечника в катушке L1.

Если сверхрегенератор не работает, то надо заменить транзистор Т1 — не все высокочастотные транзисторы хорошо работают в режиме сверхрегенеративного детектирования.

Окончательная настройка приемника производится при совместной работе с передатчиком. Включив передатчик, нажимают кнопку Кн4 (частота модуляции 4 500 гц). Приемник, не подключая к нему антенну, располагают на расстоянии 20—80 см от передатчика и сердечником катушки L1 настраивают его на несущую частоту передатчика. При точной настройке контура L1C3 на частоту передатчика сверхрегенеративный шум должен исчезнуть, а в телефонах, подключенных к выходу усилителя низкой частоты, должен громко прослушиваться тон модуляции. При этом на резисторе R10 должно развиваться переменное напряжение с частотой модуляции передатчика в пределах 1—4 в.

Теперь последовательно с обмоткой реле Р1 надо включить миллиамперметр на ток 50 ма и подбором конденсатора C13 контура L2С13 добиться наибольшего тока через реле Р1. Затем изменяют сопротивление резистора R1 (вместо него полезно поставить переменный резистор на 50 ком), устанавливают ток через реле Р1 10—12 ма — ток четкого срабатывания реле. Нужно добиться, чтобы с увеличением сопротивления резистора R1 ток через реле резко уменьшался, а при уменьшении возрастал бы незначительно, а всякое изменение положения сердечника в катушке L2 вызывало уменьшение тока в коллекторной цепи транзистора Т5.

Точно так же настраивают колебательные контуры трех других электронных реле. Может оказаться, Что только сердечниками катушек не удается настроить контуры в резонанс с частотами модуляции передатчика. В таких случаях изменяют емкости конденсаторов, входящих в колебательные контуры, на 2 000—5 000 пф.

Хорошо налаженный приемник без подключения к нему антенны должен принимать сигналы передатчика на расстоянии до 50 м от него.

В зависимости от размеров модели устанавливаемые на ней приемник и блок электронных реле дешифратора могут быть смонтированы на отдельных платах. Антенной приемника может служить любой провод длиной около 1 м с хорошим изоляционным покрытием.

Вознюк В.В.

Буферная цепь на d-триггере.

На микросхеме К561ТМ2 собран делитель частоты на два. На вход С приходят импульсы с приёмника, и D-триггер переключается в другое состояние до тех пор, пока на вход С не придёт второй импульс с приёмника. Получается очень удобно. Поскольку реле управляется с выхода триггера, то и оно будет включено или выключено до тех пор, пока не придёт следующий импульс.

Вместо микросхемы К561ТМ2 можно использовать К176ТМ2, К564ТМ2, 1КТМ2 (в металле с позолотой) или импортные аналоги CD4013, HEF4013, HСF4013. Каждая из этих микросхем состоит из двух D-триггеров. Их цоколёвка одинаковая, но вот корпуса могут быть разные, как, например, у 1КТМ2.

Дальность работы.

Чтобы приёмный модуль надёжно принимал сигналы от пульта–передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит ~24 см. Вот расчёт.

Гдеf – частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);

Скорость света С – 300 000 000 метров в секунду (м/c);

λ – длина волны в метрах (м).

Те, кто не знает, как переводить приставки Мега- и Кило- в нули, прочтите статью о сокращённой записи численных величин.

Чтобы узнать, на какой частоте работает пульт–передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно–акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.

При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.

В качестве антенны можно применить телескопическую антенну от какого–нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы

Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 – 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.

Исполнительная цепь.

В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.

Цоколёвка транзистора КТ817, КТ815.

Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.

Диоды VD1–VD4 служат защитой транзисторов VT1–VT4 от напряжения самоиндукции. В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя.

Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.

Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.

Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A. Отечественный аналог К1109КТ22.

Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.

Работает довольно просто. Подаём на вход IN1 напряжение 5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле, электромотор, цепь из светодиодов, электромагнит и пр.

В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО. Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык…

На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около ~80 – 100мА на канал. Опс. Да, чудес не бывает.

Вот схема подключения ULN2003A к выходам триггера К561ТМ2.

Есть ещё одна широко распространённая микросхема, которую можно использовать – это ULN2803A.

У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.

Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.

Вот так это выглядит на макетке.

Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.

Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR – Solid State Relay). В таком случае, схему можно существенно упростить. Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт.

Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.

Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.

Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.

Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал – оставил выводы свободными. Вот схема подключения.

Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230…230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 – 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.

Литература

Бобров Н. В. Радиоприемные устройства. — М.: Энергия, 1958.

Васильченко М. Е., Дьяков А. В. Радиолюбительская телемеханика. — М. : Энергия, 1979.

Дьяков А. В. Радиоуправляемые автомодели. — М.: ДОСААФ, 1973.

Миль Г. Электронное дистанционное управление моделями. — М.: ДОСААФ, 1980.

Приёмный модуль.

Вывод VT – это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.

При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать – это свидетельствует о приёме сигнала.

Выводы 5V и GND служат для подключения напряжения питания. Для питания схемы нам понадобится стабилизированный блок питания на 12 вольт. Ток потребления схемы небольшой, поэтому подойдёт любой блок. В качестве источника питания можно применить и блок питания, собранный своими руками.

Выводы D0, D1, D2, D3; – это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение 5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.

На схеме приёмный модуль и триггеры запитываются напряжением 5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.

Радиоуправление: схемы и конструкции своими руками

Схемы и конструкции радиоуправления, которые несложно собрать своими руками. Литература по системам радиоуправления

– аналоговые схемы радиоуправления;
– разработки на микросхемах;
– схемы радиоуправления на микроконтроллерах;
– готовые модули приемник – передатчик;
– самодельные модули приемник – передатчик;
– применяемые антенны;
– вопросы настройки самодельных модулей
– и многое другое, что связано с радиоуправлением.


1. Четырехкомандная система радиоуправления

2. Передатчик радиоуправления на микросхеме

3. Передатчик и приемник системы радиоуправления

4. Модуль передатчика радиоуправления на цифровой микросхеме


Подборка статей Владимира Днищенко для конструкторов аппаратуры радиоуправления:

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Основные принципы пропорционального радиоуправления моделями (1.1 MiB, 9,587 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Формирователи команд для аппаратуры пропорционального управления (805.3 KiB, 4,971 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Рулевые машинки для аппаратуры пропорционального управления (1.1 MiB, 6,462 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Радиоканал для аппаратуры пропорционального радиоуправления (1.5 MiB, 4,384 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Радиоканал на транзисторах для аппаратуры пропорционального радиоуправления (1.2 MiB, 4,531 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Аппаратура пропорционального радиоуправления (8.9 MiB, 5,574 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  ПРиемник прямого преобразования на интегральной микросхеме (693.2 KiB, 4,025 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Простой супергетеродин для аппаратуры радиоуправления (764.0 KiB, 4,101 hits)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Радиоканал с частотной модуляцией для аппаратуры радиоуправления (752.1 KiB, 4,698 hits)

Книга Владимира Днищенко для конструкторов аппаратуры радиоуправления:

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) | Техника и Программы  Дистанционное управление моделями (3.2 MiB, 7,182 hits)



Шифрование или “привязка” пульта к приёмнику.

Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не “привязаны”.

Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.

Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 – 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L. Буква H – означает High (“высокий”), то есть высокий уровень.

Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H, то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.

Буква L соответственно означает Low (“низкий”), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.

На печатной плате не указан нейтральный уровень – N. Это когда вывод микросхемы как бы “висит” в воздухе и ни к чему не подключен.

Таким образом, фиксированный код задаётся 3 уровнями (H, L, N). При использовании 8 выводов для установки кода получается 38 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.

На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.

Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.

Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только “свой” брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.

Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.

Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.

Главная » Радиоэлектроника для начинающих »Текущая страница

Также Вам будет интересно узнать:

Оцените статью
Радиокоптер.ру
Добавить комментарий