Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора)

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора) Мультикоптеры

Дальность работы.

Чтобы приёмный модуль надёжно принимал сигналы от пульта–передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит ~24 см. Вот расчёт.

Гдеf – частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);

Скорость света С – 300 000 000 метров в секунду (м/c);

λ – длина волны в метрах (м).

Те, кто не знает, как переводить приставки Мега- и Кило- в нули, прочтите статью о сокращённой записи численных величин.

Чтобы узнать, на какой частоте работает пульт–передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно–акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.

При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.

В качестве антенны можно применить телескопическую антенну от какого–нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора)

Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 – 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.

Детали передатчика

В передатчике использованы транзисторы с коэффициентом передачи тока базы h21э не менее 60. Резисторы типа МЛТ-0,125, конденсаторы — К10-7, КМ-6.

Согласующая антенная катушка L1 имеет 12 витков ПЭВ-1 0,4 и намотана на унифицированном каркасе от карманного приемника с подстроечным ферритовым сердечником марки 100НН диаметром 2,8 мм.

Катушка L2 бескаркасная и содержат 16 витков провода ПЭВ-1 0,8 намотанных на оправке диаметром 10 мм. В качестве кнопки управления можно использовать микропереключатель типа МП-7.

Детали передатчика монтируют на печатной плате из фольгированного стеклотекстолита. Антенна передатчика представляет собой отрезок стальной упругой проволоки диаметром 1…2 мм и длиной около 60 см, которая подключается прямо к гнезду X1, расположенному на печатной плате.

Все детали передатчика должны быть заключены в алюминиевый корпус. На передней панели корпуса располагается кнопка управления. В месте прохождения антенны через стенку корпуса к гнезду XI должен быть установлен пластмассовый изолятор, чтобы предотвратить касание антенны корпуса.

Дистанционное управление

Наверное, многие хотели бы дистанционно управлять различными бытовыми приборами, и самодельными устройствами. Но их останавливает сложность изготовления передатчика и приемника, необходимость программирования микроконтроллера. На самом деле сделать радиоуправление сейчас стало очень просто. Ведь сейчас есть очень недорогие готовые радиомодули приемника и передатчика со встроенными декодером и кодером. Например, стоимость комплекта из двух радиомодулей TX118SA-4 и RX480E-4 на популярном источнике радиодеталей, – сайте aliexpress.com начинается со 150 рублей.

Довольно удобно управлять светом при помощи простейших схем, использующих ИК-лучи. Ну а как быть, если в одной комнате нужно иметь два подобных устройства, например, для управления настольной лампой и люстрой. Или в детской комнате, где вообще не используется пульт ДУ. В этом случае вам поможет приставка к светорегулятору, позволяющая в качестве пульта ДУ использовать лазерную указку.

Схема предназначена для последовательного переключения десяти нагрузок или состояний какого-либо устройства. Управление осуществляется с помощью простого и компактного пульта с одной кнопкой. Для управления нужно
нажать эту кнопку и удерживать её в нажатом состоянии. При этом происходит последовательное переключение десяти выходов по кольцу, с индикацией включенного выхода посредством светодиода. Как только будет включен нужный выход, кнопку пульта нужно отпустить.

Ниже приводится описание несложной системы двухкомандного дистанционного управления на ИК-лучах, которую можно использовать для управления различными устройствами, а так же, охранной сигнализацией, электронным замком с дистанционным управлением. Основой схемы послужили три микросхемы LM567 и один модуль фотоприемника от дистанционного управления старого отечественного телевизора «3-УСЦТ».

Используя микросхемы для радиоуправления игрушками и элементы инфракрасного канала передачи данных от систем управления бытовой радиотехникой, можно создавать достаточно эффективные устройства дистанционного управления различными объектами, такими как бытовые электроприборы, осветительные приборы, различные электроприводы. Наглядный пример, – система управления двумя объектами (например, группами ламп люстры, или электроприводами штор окон), описание которой приводится ниже.

В 80-е годы и начало 90-х появились телевизоры 2-УСЦТ, 3-УСЦТ.
Но время УСЦТ прошло, но некоторые узлы и модули таких телевизоров можно использовать почти по прямому назначению. Например, систему дистанционного управления, предназначенную для переключения восьми программ, можно приспособить для дистанционной передачи трехразрядного двоичного кода или для управления нагрузками или устройствами.

Система предназначена для дистанционного переключения четырех объектов или выключения. Особенности: в качестве кодера и декодера сигналов управления работают микросхемы для телефонии (тонального набора), приемник и передатчик выполнены на полевых транзисторах с минимумом контуров.

Микросхемы РТ8А977 и РТ8А978 предназначены для радиоуправления различными игрушками, но на их основе можно делать и другие системы дистанционного управления, и не только на радиоканале, но и на инфракрасных лучах.
Пример схемы пяти-командного дистанционного управления на ИК-лучах, с использованием в качеств кодера и декодера этих микросхем, показан на рисунке 1.

Сегодня для всех зданий и сооружений требуется система управления дымоудалением. На рынке лучшее предложение дает компании mercorproof.ru. И цены при этом очень низкие!

В современной аппаратуре применяются интегральные приемники ИК-излучения типа SFH-506-36, HL536AA3P и многие другие, которые содержат ИК-фотодиод, усилитель, фильтр на 36 кГц (или на другую частоту указанную в маркировке), детектор и формирователь логических импульсов. Интересная особенность работы таких фотоприемников была исследована на примере HL536AA3P. При частоте ИК-вспышек от 300 Гц до 6-10 кГц фотоприемник работает как обычный детектор ИК-излучения, то есть, на его выходе формируются отрицательные импульсы такой же частоты, как и частота вспышек. А при более высокой частоте ИК-вспышек (около 25-38 кГц) он переходит в режим амплитудной демодуляции, и на его выходе устанавливается постоянное напряжение логического нуля. Эта особенность позволяет очень легко реализовать однокомандную систему дистанционного управления, например, предназначенную для переключения по кольцу фиксированных настроек старого телевизора (типа 3-УСЦТ) или самодельного УКВ-ЧМ тюнера.

Ранее была описана простая система управления откатными воротами при помощи обычного инфракрасного пульта для дистанционного управления телевизором или другой аппаратурой. Но, дальность пульта весьма ограничена, а вот сотовый телефон может быть за сотни километров от этих ворот тут. К тому же у каждого должен быть свой пульт, либо пульт нужно передавать друг другу. Конечно, пультов можно накупить много, но как быть, если Вы находитесь далеко, а на участок нужно пустить кого-то во время вашего отсутствия. Нужно лично встречаться с этим человеком, чтобы передать ему пульт, а затем еще раз, чтобы этот пульт забрать. Выход из положения может быть, если в качестве пульта будет использоваться сотовый телефон.

Изготовление гусениц

Трудно это представить, однако, отличные гусеницы с хорошим сцеплением получаются из ПВХ коврика для ванны, найти его можно практически в любом магазине хозяйственных товаров. Такой коврик состоит из множества гибких «полос», которые соединены между собой параллельно идущими нитями, то что нужно для создания гусеницы. От коврика отрезается лента шириной 1,5-2 см, она должна быть равна ширине используемых колёс.

Затем необходимо приложить ленту к закреплённым на шасси колёсам и отрезать её по необходимой длине, затем концы ленты склеиваются суперклеем. После того, как клей высохнет, можно примерить гусеницу на шасси и даже включить мотор – гусеница будет вращаться, однако быстро спадёт с колёс.

Смотрите про коптеры:  Как сделать пульт для телевизора из смартфона | Телевизоры | Блог | Клуб DNS

Для того, чтобы гусеница не спадала с колёс, даже когда будущая машинка будет переезжать препятствия, нужно сделать выпуклые упоры по центру гусеницы. При вращении они будут попадать в зазор между колёсами, не давая гусенице сойти. Сделать такие упоры можно множеством способов, я решил приклеить спички на каждый «шаг» гусеницы, как показал опыт, данный способ оказался рабочим и при достаточном натяжении гусеница совершенно не спадала.

Все те же действия нужно сделать со второй гусеницей. После наклеивания спичек гусеницы можно считать готовыми – теперь они надеются на шасси и уже можно проверить, как поедет будущая машинка, подав напряжение с аккумулятора напрямую на оба мотора. При необходимости нужно отрегулировать силу натяжения – слишком слабая гусеница будет проворачиваться или спадать, а слишком сильно натянутая будет туго вращаться, оказывая дополнительную нагрузку на мотор.

Изготовление шасси

Понадобится не так много материалов: приводиться в движение гусеницы будут с помощью пары мотор-редукторов, основой всей конструкции будет небольшой кусок толстой фанерки, также понадобится несколько пластиковых колёсиков, по которым и будут вращаться гусеницы.

Для машинки можно использовать практически любые подходящие по размеру мотор-редукторы, идеально подойдут «жёлтые», которые можно встретить во многих магазинах радиодеталей, либо купить на Али, редуктор в них даёт передаточное соотношение 1:48, что для данного случая является самым оптимальным значением.

Каждый редуктор имеет выход на два вала, по разные стороны корпуса – для гусеничного шасси задействован будет только один вал с каждого мотора, второй можно удалить вовсе либо оставить на случай, если эти моторы ещё понадобятся в других проектах. На валы необходимо закрепить колёса – сделать это площе всего, вкрутив саморез в сам вал (внутри он полый), таким образом, колёса хорошо зажмутся.

Для дополнительной фиксации, и чтобы не раскрутился саморез, можно обильно смазать соединение клеем. Обратите внимание, что колесо двойное – между каждым из колёс делается зазор примерно 3-4 мм, в дальнейшем с его помощью будет фиксироваться гусеница.

Моторы закрепляются на кусочке прочной фанеры, её размер можно выбрать произвольно, в зависимости от желаемых размеров машинки. Каких-либо удобных мест для крепления данные мотор-редукторы не предусматривают, поэтому зафиксировал я их с помощью термоклея – хорошие клеевые стержни обеспечивают отличное качество соединения, как показал опыт.

Далее в противоположной стороне от моторов необходимо закрепить уголки для оси передних колёс. Для этого очень рекомендую использовать детали от детского железного конструктора – там можно найти готовые уголки с отверстиями. При сверлении отверстия в фанерке нужно учитывать, что в дальнейшем понадобится регулировка натяжения гусениц, поэтому необходимо просверлить ряд отверстий длиной примерно 1-1,5 см, которые затем соединить в одну продолговатую прорезь. Таким образом, вся передняя ось будет двигаться взад-вперёд, фиксируясь болтами в нужном положении.

В отверстия в уголках продевается шпилька, удобно использовать м4, она даёт достаточную жёсткость и при этом подходит под отверстия в деталях железного конструктора. Шпильку необходимо жёстко закрепить на уголках, удобно использовать для этого гайки с фиксацией, они не раскрутятся сами собой, когда машинка начнёт ездить.

По бокам устанавливаются те же двойные колёса, что и сзади, с точном таким же зазором. Колёса должны свободно вращаться на оси, обеспечить это можно теми же гайками с фиксацией. Обратите внимание, что левые и правые колёса должны вращаться независимо друг от друга.

Исполнительная цепь.

В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.

Цоколёвка транзистора КТ817, КТ815.

Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.

Диоды VD1–VD4 служат защитой транзисторов VT1–VT4 от напряжения самоиндукции. В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя.

Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.

Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.

Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A. Отечественный аналог К1109КТ22.

Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.

Работает довольно просто. Подаём на вход IN1 напряжение 5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле, электромотор, цепь из светодиодов, электромагнит и пр.

В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО. Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык…

На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около ~80 – 100мА на канал. Опс. Да, чудес не бывает.

Вот схема подключения ULN2003A к выходам триггера К561ТМ2.

Есть ещё одна широко распространённая микросхема, которую можно использовать – это ULN2803A.

У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.

Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.

Вот так это выглядит на макетке.

Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.

Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR – Solid State Relay). В таком случае, схему можно существенно упростить. Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт.

Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.

Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.

Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.

Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал – оставил выводы свободными. Вот схема подключения.

Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230…230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 – 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.

Испытания

На этом сборка машинки завершена, можно вставлять аккумуляторы и проверять работу. При этом не лишним будет проверить ток потребления – при отсутствии команд с пульта он должен быть небольшим, около нескольких десятков мА. Дальность действия пульта будет зависеть от используемых модулей приёмника и передатчика – чаще всего они обеспечивают зону уверенного приёма около 20-30 метров в городских условиях, чего вполне достаточно для управления машинкой.

Таким образом, получилась весьма занятная игрушка для детей и взрослых – гусеницы из ПВХ-коврика обеспечивают отличное сцепление с любыми поверхностями, поэтому машинка легко преодолевает препятствия. К преимуществам гусеничного варианта также можно отнести простоту управления – не нужно устанавливать дополнительные рулевые механизмы, всё управление происходит только за счёт смены направления вращения гусениц.

Недостатком описанной конструкции шасси можно назвать маленький «дорожный просвет» – моторы располагаются под днищем и занимают там довольно много места, тем не менее, это не мешает получению удовольствия от «вождения», а при желании и этот недостаток можно устранить, добавив дополнительную ось для задних колёс и расположив моторы сверху. Удачной сборки!

Приёмный модуль.

Вывод VT – это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.

При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать – это свидетельствует о приёме сигнала.

Смотрите про коптеры:  Аппаратура радиоуправления. Схемы, статьи Бесплатной технической библиотеки

Выводы 5V и GND служат для подключения напряжения питания. Для питания схемы нам понадобится стабилизированный блок питания на 12 вольт. Ток потребления схемы небольшой, поэтому подойдёт любой блок. В качестве источника питания можно применить и блок питания, собранный своими руками.

Выводы D0, D1, D2, D3; – это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение 5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.

На схеме приёмный модуль и триггеры запитываются напряжением 5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Схема передатчика. Рисунок 1.
DD1МикросхемаК561ЛЕ101Поиск в магазине ОтронВ блокнот
DD2МикросхемаК561ИЕ81Поиск в магазине ОтронВ блокнот
VT1, VT2Биполярный транзистор

КТ315Г

2Поиск в магазине ОтронВ блокнот
VD1Диод

КД503А

1Поиск в магазине ОтронВ блокнот
С1Конденсатор6800 пФ1Поиск в магазине ОтронВ блокнот
С2Конденсатор0.047 мкФ1Поиск в магазине ОтронВ блокнот
С3Конденсатор27 пФ1Поиск в магазине ОтронВ блокнот
С4Конденсатор16 пФ1Поиск в магазине ОтронВ блокнот
С5Конденсатор43 пФ1Поиск в магазине ОтронВ блокнот
R1Резистор

750 кОм

1Поиск в магазине ОтронВ блокнот
R2Резистор

270 кОм

1Поиск в магазине ОтронВ блокнот
R3Резистор

110 кОм

1Поиск в магазине ОтронВ блокнот
R4Резистор

33 кОм

1Поиск в магазине ОтронВ блокнот
R5Резистор

7.5 кОм

1Поиск в магазине ОтронВ блокнот
R6Резистор

220 Ом

1Поиск в магазине ОтронВ блокнот
Z1Кварцевый резонатор27.12 МГц1Поиск в магазине ОтронВ блокнот
L1Катушка индуктивности1Изготавливается самостоятельноПоиск в магазине ОтронВ блокнот
Схема приемника. Рисунок 2.
VT1-VT4Биполярный транзистор

КТ315Г

4Поиск в магазине ОтронВ блокнот
С1Конденсатор4.7 пФ1Поиск в магазине ОтронВ блокнот
С2Конденсатор27 пФ1Поиск в магазине ОтронВ блокнот
С3Конденсатор0.015 мкФ1Поиск в магазине ОтронВ блокнот
С4, С8, С11, С12Электролитический конденсатор10 мкФ 10 В4Поиск в магазине ОтронВ блокнот
С5Конденсатор18 пФ1Поиск в магазине ОтронВ блокнот
С6Конденсатор2200 пФ1Поиск в магазине ОтронВ блокнот
С7Конденсатор0.047 мкФ1Поиск в магазине ОтронВ блокнот
С9Конденсатор0.1 мкФ1Поиск в магазине ОтронВ блокнот
С10Конденсатор3300 пФ1Поиск в магазине ОтронВ блокнот
С13Электролитический конденсатор500 мкФ 6.3 В1Поиск в магазине ОтронВ блокнот
R1Резистор

33 кОм

1Поиск в магазине ОтронВ блокнот
R2Резистор

20 кОм

1Поиск в магазине ОтронВ блокнот
R3Резистор

3.3 кОм

1Поиск в магазине ОтронВ блокнот
R4Резистор

9.1 кОм

1Поиск в магазине ОтронВ блокнот
R5Резистор

510 кОм

1Поиск в магазине ОтронВ блокнот
R6Подстроечный резистор1 МОм1Поиск в магазине ОтронВ блокнот
R7Резистор

12 кОм

1Поиск в магазине ОтронВ блокнот
R8Резистор

2 кОм

1Поиск в магазине ОтронВ блокнот
R9Резистор

1 кОм

1Поиск в магазине ОтронВ блокнот
R10Резистор

22 кОм

1Поиск в магазине ОтронВ блокнот
R11Резистор

7.5 кОм

1Поиск в магазине ОтронВ блокнот
L1Катушка индуктивности1Изготавливается самостоятельноПоиск в магазине ОтронВ блокнот
L2Дроссель30 мкГн1Дроссель типа ДМ-0.2Поиск в магазине ОтронВ блокнот
Схема дешифратора. Рисунок 4.
DD1, DD8МикросхемаК561ЛП22Поиск в магазине ОтронВ блокнот
DD2МикросхемаК561ИЕ101Поиск в магазине ОтронВ блокнот
DD3, DD4МикросхемаК561ИР22Поиск в магазине ОтронВ блокнот
DD5МикросхемаК561ЛП131Поиск в магазине ОтронВ блокнот
DD6МикросхемаК561ИД11Поиск в магазине ОтронВ блокнот
DD7МикросхемаК561ТМ21Поиск в магазине ОтронВ блокнот
VT1, VT2Биполярный транзистор

КТ815А

2Поиск в магазине ОтронВ блокнот
VD1Диод

КД503А

1Поиск в магазине ОтронВ блокнот
С1Конденсатор0.01 мкФ1Поиск в магазине ОтронВ блокнот
С2Конденсатор0.033 мкФ1Поиск в магазине ОтронВ блокнот
С3, С4Конденсатор0.1 мкФ2Поиск в магазине ОтронВ блокнот
R1Резистор

110 кОм

1Поиск в магазине ОтронВ блокнот
R2Резистор

620 кОм

1Поиск в магазине ОтронВ блокнот
Дополнение по общей схеме. Рисунок 5.
С1-С4Конденсатор0.22 мкФ4Поиск в магазине ОтронВ блокнот
L1-L4Дроссель12 мкГн4Дроссель типа ДМ-3Поиск в магазине ОтронВ блокнот
М1, М2Электродвигатель постоянного тока6 Вольт2Поиск в магазине ОтронВ блокнот
HL1Лампочка6 Вольт1Поиск в магазине ОтронВ блокнот
БВ1, БВ2Батарея питания6 Вольт2Поиск в магазине ОтронВ блокнот
SA1Спаренный выключатель питания1Поиск в магазине ОтронВ блокнот
SB1, SB2Выключатель2Поиск в магазине ОтронВ блокнот
Антенна1Велосипедная спицаПоиск в магазине ОтронВ блокнот
Добавить все

Схемы простых передатчика и приемника для радиоуправления моделями (3 транзистора)

Для радиоуправления различными моделями и игрушками может быть использована аппаратура дискретного и пропорционального действия. Основное отличие аппаратуры пропорционального действия от дискретной состоит в том, что она позволяет по командам оператора отклонять рули модели на любой требуемый угол и плавно изменять скорость и направление ее движения «Вперед» или «Назад». Постройка и налаживание аппаратуры пропорционального действия достаточно сложны и не всегда под силу начинающему радиолюбителю. Хотя аппаратура дискретного действия и имеет ограниченные возможности, но, применяя специальные технические решения, можно их расширить. Поэтому далее рассмотрим однокомандную аппаратуру управления, пригодную для колесных, летающих и плавающих моделей.

Передатчик радиоуправляемой модели

Для управления моделями в радиусе 500 м, как показывает опыт, достаточно иметь передатчик с выходной мощностью окьло 100 мВт. Передатчики радиоуправляемых моделей, как правило, работают в диапазоне 10 м. Однокомандное управление моделью осуществляется следующим образом. При подаче команды управления передатчик излучает высокочастотные электромагнитные колебания, другими словами, генерирует одну несущую частоту. Приемник, который находится на модели принимает сигнал, посланный передатчиком, в результате чего срабатывает исполнительный механизм. В итоге модель, подчи-нясь команде, меняет направление движения или осуществляет одно какое-нибудь заранее заложенное в конструкцию модели указание. Используя однокомандную модель управления, можно заставить модель осуществлять достаточно сложные движения. Схема однокоманд-

ного передатчика представлена на рис. 22.4. Передатчик включает задающий генератор колебаний высокой частоты и модулятор. Задающий генератор собран на транзисторе VT1 по схеме емкостной трех-точки. Контур L2, С2 передатчика настроен на частоту 27,12 МГц, которая отведена Госсвязьнадзором электросвязи для радиоуправления моделями. Режим работы генератора по постоянному току определяется подбором величины сопротивления резистора R1. Созданные генератором высокочастотные колебания излучаются в пространство антенной, подключенной к контуру через согласующую катушку индуктивности L1. Модулятор выполнен на двух транзисторах VT1, VT2 и представляет собой симметричный мультивибратор. Модулируемое напряжение снимается с коллекторной нагрузки R4 транзистора VT2 и подается в общую цепь питания транзистора VT1 высокочастотного генератора, что обеспечивает 100% модуляцию. Управляется передатчик кнопкой SB1, включенной в общую цепь питания. Задающий генератор работает не непрерывно, а только при нажатой кнопке SB1, когда появляются импульсы тока, вырабатываемые мультивибратором. Посылка в антенну высокочастотных колебаний, созданных задающим генератором, происходит отдельными порциями, частота следования которых соответствует частоте импульсов модулятора.

D6D0033714B15A6F000B9D9701808FDB6599

Рис. 22.4. Принципиальная схема передатчика радиоуправляемой модели

В передатчике использованы транзисторы с коэффициентом передачи тока базы Ь2іэ не менее 60. Резисторы типа МЛТ-0,125, конденсаторы — К10-7, КМ-6. Согласующая антенная катушка L1 имеет 12 витков ПЭВ-1 0,4 и намотана на унифицированном каркасе от карманного приемника с подстроечным ферритовым сердечником марки 100НН диаметром 2,8 мм. Катушка L2 бескаркасная и содержат 16 витков провода ПЭВ-1 0,8 намотанных на оправке 010 мм. В качестве кнопки управления можно использовать микропереключатель типа МП-7. Детали передатчика монтируют на печатной плате из фольгированного стеклотекстолита. Антенна передатчика представляет собой отрезок стальной упругой проволоки 01…2 мм и длиной около 60 см, которая подключается прямо к гнезду XI, расположенному на печатной плате. Все детали передатчика должны быть заключены в алюминиевый корпус. На передней панели корпуса располагается кнопка управления. В месте прохождения антенны через стенку корпуса к гнезду XI должен быть установлен пластмассовый изолятор, чтобы предотвратить касание антенны корпуса.

При заведомо исправных деталях и правильном монтаже передатчик не требует особой наладки. Необходимо только убедиться в его работоспособности и, изменяя индуктивность катушки L1, добиться максимальной мощности передатчика. Для проверки работы мультивибратора надо включить высокоомные наушники между коллектором VT2 и плюсом источника питания. При замыкании кнопки SB1 в наушниках должен прослушиваться звук низкого тона, соответствующий частоте мультивибратора. Для проверки работоспособности генератора ВЧ необходимо собрать волномер по схеме рис. 22.5. Схема представляет собой простой детекторный приемник, в котором катушка L1 намотана проводом ПЭВ-1 1…1,2 и содержит 10 витков с отводом от 3 витка.

Смотрите про коптеры:  Сервопривод – купить сервомашинки для моделей в Москве, цена на сервопривод в интернет-магазине Хобби Центр

D6D0033714B15A6F000B9D9701808FDB6600

Рис. 22.5. Принципиальная схема волномера для настройки передатчика

Катушка намотана с шагом 4 мм на пластмассовом каркасе 025 мм. В качестве индикатора используется вольтметр постоянного тока с относительным входным сопротивлением 10 кОм/В или микроамперметр на ток 50…100мкА. Волномер собирают на небольшой пластине из фольгированного стеклотекстолита толщиной 1,5 мм. Включив передатчик, располагают от него волномер на расстоянии 50…60 см. При исправном генераторе ВЧ стрелка волномера отклоняется на некоторый угол от нулевой отметки. Настраивая генератор ВЧ на частоту 27,12 МГц, сдвигая и раздвигая витки катушки L2, добиваются максимального отклонения стрелки вольтметра. Максимальную мощность высокочастотных колебаний, излучаемых антенной, получают вращением сердечника катушки L1. Настройка передатчика считается оконченной, если вольтметр волномера на расстоянии 1…1,2 м от передатчика показывает напряжение не менее 0,05 В.

Приемник радиоуправляемой модели

Для управления моделью радиолюбители довольно часто используют приемники, построенные по схеме сверхрегенератора. Это связано с тем, что сверхрегенеративный приемник, имея простую конструкцию, обладает очень высокой чувствительностью, порядка 10…20 мкВ. Схема сверхрегенеративного приемника для модели приведена на рис. 22.6. Приемник собран на трех транзисторах и питается от батареи типа «Крона» или другого источника напряжением 9 В. Первый каскад приемника представляет собой сверхрегенеративный детектор с самогашением, выполненный на транзисторе VT1. Если на антенну не поступает сигнал, то этот каскад генерирует импульсы высокочастотных колебаний, следующих с частотой 60…100 кГц. Это и есть частота гашения, которая задается конденсатором С6 и резистором R3.

D6D0033714B15A6F000B9D9701808FDB6601

Рис. 22.6. Принципиальная схема сверхрегенеративного приемника радиоуправляемой модели

Усиление выделенного командного сигнала сверхрегенеративным детектором приемника происходит следующим образом. Транзистор VT1 включен по схеме с общей базой и его коллекторный ток пульсирует с частотой гашения. При отсутствии на входе приемника сигнала, эти импульсы детектируются и создают на резисторе R3 некоторое напряжение. В момент поступления сигнала на приемник продолжительность отдельных импульсов возрастает, что приводит к увеличению напряжения на резисторе R3. Приемник имеет один входной контур LI, С4, который с помощью сердечника катушки L1 настраивается на частоту передатчика. Связь контура с антенной — емкостная. Принятый приемником сигнал управления выделяется на резисторе R4. Этот сигнал в 10…30 раз меньше напряжения частоты гашения. Для подавления мешающего напряжения с частотой гашения между сверхрегенеративным детектором и усилителем напряжения включен фильтр L3, С7. При этом на выходе фильтра напряжение частоты гашения в 5… 10 раз меньше амплитуды полезного сигнала. Продетектированный сигнал через разделительный конденсатор С8 подается на базу транзистора VT2, представляющего собой каскад усиления низкой частоты, а далее на электронное реле, собранное на транзисторе ѴТЗ и диодах VD1, VD2. Усиленный транзистором ѴТЗ сигнал выпрямляется диодами VD1 и VD2. Выпрямленный ток (отрицательной полярности) поступает на базу транзистора ѴТЗ. При появлении тока на входе электронного реле, коллекторный ток транзистора увеличивается и срабатывает реле К1. В качестве антенны приемника можно использовать штырь длиной 70… 100 см. Максимальная чувствительность сверхрегенеративного приемника устанавливается подбором сопротивления резистора R1.

Монтаж приемника

Монтаж приемника выполняют печатным способом на плате из фольгированного стеклотекстолита толщиной 1,5 мм и размерами 100×65 мм. В приемнике используются резисторы и конденсаторы тех же типов, что и в передатчике. Катушка контура сверхрегенератора L1 имеет 8 витков провода ПЭЛШО 0,35, намотанных виток к витку на полистироловом каркасе 06,5 мм, с подстроечным ферритовым сердечником марки 100НН диаметром 2,7 мм и длиной 8 мм. Дроссели имеют индуктивность: L2 — 8 мкГн, a L3 — 0,07…0,1 мкГн. Электромагнитное реле К1 типа РЭС-6 с обмоткой сопротивлением 200 Ом. Настройку приемника начинают с сверхрегенеративного каскада. Подключают высокоомные наушники параллельно конденсатору С7 и включают питание. Появившийся в наушниках шум свидетельствует об исправной работе сверхрегенеративного детектора. Изменением сопротивления резистора R1 добиваются максимального шума в наушниках. Каскад усиления напряжения на транзисторе VT2 и электронное реле особой наладки не требуют. Подбором сопротивления резистора R7 добиваются чувствительности приемника порядка 20 мкВ. Окончательная настройка приемника производится совместно с передатчиком. Если в приемнике параллельно обмотке реле К1 подключить наушники и включить передатчик, то в наушниках должен прослушиваться громкий шум. Настройка приемника на частоту передатчика приводит к пропаданию шума в наушниках и срабатыванию реле.

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

nauchebe.net

Шифрование или “привязка” пульта к приёмнику.

Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не “привязаны”.

Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.

Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 – 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L. Буква H – означает High (“высокий”), то есть высокий уровень.

Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H, то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.

Буква L соответственно означает Low (“низкий”), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.

На печатной плате не указан нейтральный уровень – N. Это когда вывод микросхемы как бы “висит” в воздухе и ни к чему не подключен.

Таким образом, фиксированный код задаётся 3 уровнями (H, L, N). При использовании 8 выводов для установки кода получается 38 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.

На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.

Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.

Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только “свой” брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.

Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.

Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Электрическая часть

В электрической части понадобится сразу несколько плат: платы приёмника и передатчика для передачи команд с пульта, повышающие преобразователи для питания моторов, а также платы «мосты» для возможности вращения каждого из моторов в обе стороны. Общая схема такова – плата передатчика будет устанавливаться в пульте, плата приёмника на шасси машинки.

Повышающие преобразователи преобразуют напряжение с аккумуляторов (3,7 – 4,2 вольта) до уровня 7-8 вольт, от которых уже будут питаться моторы. Если моторы развивают достаточную скорость и напрямую от аккумулятора, то преобразователи можно не ставить.

Управлять вращением моторов будут мостовые схемы – специальные схемы с полевыми транзисторами, которые могут подавать на выход напряжение либо одной полярности, либо другой, в зависимости от того, на какой вход (in 1 или in 2) будет приходить управляющий сигнал с платы приёмника. Сперва рассмотрим схемы передатчика и приёмника, они соответственно представлены ниже.

Если быть точным, данные схемы называются кодером и декодером, а в качестве именно приёмника и передатчика выступают готовые модули RX-TX на частоту 433 МГц, которые легко можно купить на Али или многих магазинах радиодеталей –

Оцените статью
Радиокоптер.ру
Добавить комментарий

Adblock
detector