ТОП 10 дронов с большим радиусом действия и камерой

ТОП 10 дронов с большим радиусом действия и камерой Лодки

Бензиновые квадрокоптеры и мультикоптеры. краткий обзор

Квадрокоптеры неожиданно ворвались в нашу жизнь и распространились повсеместно. Они получили свой второй шанс на жизнь, впервые появившись в первой половине прошлого века. Однако их основная проблема так до сих пор и не решена, — над чем и бьются множество компаний и отдельных энтузиастов.

Мультикоптер (англ. Multirotor, multicopter, многороторный вертолёт, многолёт) — летательный аппарат, построенный по вертолётной схеме, с тремя и более несущими винтами
Многовинтовые вертолёты разрабатывались ещё в первые годы вертолётостроения. Один из первых квадрокоптеров (англ. quadcopter, четырёхроторный вертолёт), который реально оторвался от земли и мог держаться в воздухе, был создан Георгием Ботезатом и испытан в 1922 году.

ТОП 10 дронов с большим радиусом действия и камерой
Источник картинки: wikipedia.org

Новое рождение мультикоптеры получили в XXI веке, уже как беспилотные аппараты. Благодаря простоте конструкции квадрокоптеры часто используются в любительском моделировании, также удобны для недорогой аэрофото- и киносъёмки.

В последнее время появились миниатюрные квадрокоптеры, умещающиеся на ладони (Walkera Ladybird, WLtoys V929, Blue Arrow nano Loop и пр). Они практически безопасны (масса аппарата менее 100 г), в то же время позволяют получить основные навыки полёта на мультироторном аппарате, так как принцип их управления ничем не отличается. Квадрокоптеры такого размера возможно запускать дома, не рискуя нанести вред людям или предметам. Некоторые модели разгоняются до впечатляющих 26 м/с[13], имеют высокое качество съёмки и управляются на расстоянии более 3,5 км.

По принципу управления мультикоптеры существуют:

Мультикоптеры имеют 3 или более винтов постоянного шага (автомата перекоса, в отличие от одно- и двухвинтовых аппаратов, нет). Каждый винт приводится в движение собственным двигателем. Половина винтов вращается по часовой стрелке, половина — против, поэтому рулевой винт мультикоптеру не нужен. Маневрируют мультикоптеры путём изменения скорости вращения винтов. Например:

Микропроцессорная система переводит команды радиоуправления в команды двигателям. Чтобы обеспечить стабильное зависание, мультикоптеры в обязательном порядке снабжают тремя гироскопами, фиксирующими крен аппарата. Как вспомогательный инструмент, иногда, также используется акселерометр, данные от которого позволяют процессору устанавливать абсолютно горизонтальное положение, и бародатчик, который позволяет фиксировать аппарат на нужной высоте. Также применяют сонар для автоматической посадки и удержания небольшой высоты, а также для облёта препятствий. Использование GPS-приёмника позволят записывать маршрут полёта заранее, с компьютера а также возвращать аппарат в точку взлёта, в случае потери управляющего радиосигнала, или снимать параметры полёта оперативно или потом.

Винты могут быть установлены непосредственно на вал двигателя, либо через редуктор.
В любительских и профессиональных мультикоптерах используются коллекторные и бесколлекторные электродвигатели и литий-полимерные аккумуляторы в качестве источника энергии. Это накладывает определённые ограничения на полётные характеристики: типичная масса мультикоптера составляет от 1 до 4 кг, при времени полёта от 10 до 30 минут (30—50 минут у уникальных единичных экземпляров). Запас энергии батарей позволяет отдельным моделям мультикоптеров улетать на расстояние до 7—12 км, на практике же радиус действия (максимальное расстояние, на которое они способны улететь с последующим возвратом в точку взлёта) обычно ограничено прямой видимостью (100—200 м при ручном управлении) либо дальностью действия аппаратуры радиоуправления и видеолинка. При этом лучшие образцы подобной аппаратуры, использующие усилители мощности радиосигнала и систему направленных антенн, способны обеспечивать стабильные: радиоуправление и видеолинк на расстояния до 100 км. Таким образом, наибольшее ограничение на радиус действия мультикоптеров накладывает именно время полёта.

Смотрите про коптеры:  Путешествуем с коптером: курорты Европы. Часть I

Эти ограничения приводят к тому, что мультикоптеры обычно используются как аппараты «ближнего радиуса действия»: для любительских полётов недалеко от себя, для фото-видеосъёмки близко расположенных объектов и так далее (для сравнения, беспилотные самолёты с аккумулятором аналогичной ёмкости могут улетать на 10—15 км при высоте полёта 1—2 км).

Поднимаемый полезный груз моделями мультикоптеров среднего размера и грузоподъёмности — от 500 г до 2—3 кг, что позволяет поднять в воздух небольшую фото- или видеокамеру (обычно экшн-камера в более дешёвых моделях, либо зеркальные камеры в профессиональных).

Существуют и достаточно крупные модели мультикоптеров, с количеством роторов порядка 6—8 (гекса- и октокоптеры), способные поднять в воздух груз массой до 20—30 кг. Для увеличения грузоподъёмности применяют соосное расположение несущих роторов, что в случае гексакоптера, например, даёт 12 моторов и 12 пропеллеров, расположенных попарно на 6 несущих лучах.

Скорость полёта мультикоптера может быть от нуля (неподвижное висение в точке) до 100—110 км/ч.

Существуют также трёх- и пятивинтовые вертолёты (три- и пентакоптеры). Один из моторов там располагается на нанизанной на ось подвижной платформе, угол поворота которой изменяется сервоприводом — так и осуществляется поворот аппарата вокруг своей оси. Отдельно стоит отметить экспериментальные аппараты: бикоптеры, квадрокоптеры с изменяемым шагом пропеллеров, квадрокоптеры с двигателями на импеллерах, однако они не получили какого-либо распространения.

Большое количество энтузиастов занимается самостоятельной сборкой коптеров.
Часто для этих целей они используются широко известный недорогой полётный контроллер KK Multicopter, который имеет несмотря на свою низкую цену, достаточно широкие возможности и позволяет управлять системой, содержащий до 6 роторов включительно.

ТОП 10 дронов с большим радиусом действия и камерой
Источник картинки: www.quad-copter.ru

Следует упомянуть, что большая часть современных мультироторных систем представляет собой электрические машины, где тяговыми двигателями выступают электродвигатели, а в качестве источника энергии для них используются, в основном, литий-полимерные аккумуляторные батареи.

Исходя из всего вышесказанного, проистекает основная проблема мультироторных электрических систем: малое время работы (ввиду гораздо меньшего соотношения ёмкости аккумуляторных батарей к их весу, то есть энергоёмкости, по сравнению с любыми топливными системами) и невозможность подзарядки аккумуляторов в полевых условиях, ввиду отсутствия такой возможности.

Кроме того, грузоподъёмность мультироторных систем оставляет желать лучшего. Они вполне годятся для перевозки небольших грузов, однако стоимость системы, которая сможет стать полноценным средством передвижения или перевозки пассажиров, будет достаточно внушительной. Справедливости ради, однако, следует отметить, что в последнее время начинают практически реализовываться идеи некоего летающего городского такси, которое как раз будет построено на основе мультироторной электрической системы.

Однако, как уже было сказано ранее, мультироторные системы появились не вчера, изначально они представляли собой исключительно системы на двигателях внутреннего сгорания.

И не так давно, в середине 2022-х годов появилось достаточно интересная система, которая «возвращалась к истокам» и представляла собой квадрокоптер бензинового типа — Nitro Stingray.

В отличие от своих электрических собратьев, эта система в своей основе имела в качестве силовой установки двигатель внутреннего сгорания, от которого крутящий момент передавался на все четыре несущих ротора:

Этот квадрокоптер отличался тем, что он имел один центральный двигатель, а присущая мультикоптерам подвижность,- обеспечивалась четырьмя винтами, с изменяемым шагом:

Ввиду высокой энергоёмкости сжигаемого топлива, этот квадрокоптер имел относительно небольшой вес, если сравнивать его с электрическими собратьями, высокую удельную грузоподъёмность, а также подвижность, о чём было сказано ранее.

В это же десятилетие отметились несколько известных проектов, которые пытались решить проблему недостаточной грузоподъёмности электрических устройств таким же путем, — использованием центрального двигателя и передачи крутящего момента, в то время как управление осуществлялось регулировкой шага винтов.

Смотрите про коптеры:  Вход воспрещён: в какие страны нельзя брать с собой дрон — Ozon Клуб

Одним из таких проектов является проект Incredible HLQ (Heavy Lift Quadcopter), который даже запускал свою кампанию на kickstarter com.

Вот что говорили о нём его создатели:

«Мы — группа студентов-механиков, работающих над нашим главным проектом в Государственном университете Сан-Хосе в Сан-Хосе, Калифорния. В состав группы входят 4 участника: Ник Коновер, Крис Фулмер, Карлос Герреро и Габриэль Теллез. Каждый из нас обладает особым набором навыков и специализируется в 2 различных дисциплинах: мехатроника и конструирование.

Мы проектируем и строим квадрокоптер с большой грузоподъёмностью (HLQ), который мы называем Incredible HLQ (звучит как «Халк»). Как и супергерой, HLQ сможет поднимать и транспортировать огромное количество веса для своего размера и стоимости. HLQ сможет автономно извлекать и доставлять 50 фунтов (~22,7 кг) полезной нагрузки.

Чтобы достичь цели в 50 фунтов, HLQ будет использовать трансмиссию, приводимую в действие двумя бензиновыми двухтактными двигателями мощностью около 12,5 л.с. каждый. Подъём будет осуществляться с помощью четырёх головок несущего винта коммерческого радиоуправляемого вертолёта с четырьмя лопастями диаметром 435 мм. Выбор этих лопастей был основан на реальных испытаниях подъёмной силы на нашем испытательном стенде, которые показаны в видео. Управление достигается за счёт использования управления переменным шагом винтов для изменения подъёмной силы каждого ротора.

Управление полётом будет использовать модуль DIYDrone Ardupilot APM2.5 . Ardupilot — это плата управления на базе Arduino с открытым исходным кодом для БПЛА. Он широко используется для многих летательных аппаратов с неподвижным крылом, вертолётов и многороторных летательных аппаратов и имеет подтверждённый послужной список.

Кроме того, мы будем использовать систему компьютерного зрения для идентификации и отслеживания полезной нагрузки с помощью библиотеки OpenCV на Roboard RB-110. RB-110 — это полноценный компьютер на одной плате. Он имеет 486-совместимый процессор с тактовой частотой 1 ГГц и может работать под Windows, Linux или Dos.
HLQ — дорогостоящий проект для большинства старших инженерных проектов в SJSU (Государственный университет Сан-Хосе). Затраты выходят за рамки того, что мы, студенты, можем себе позволить, и поэтому ваша поддержка имеет решающее значение для нашего успеха».

У проекта есть свой канал на YouTube, где они публикуют последние новости о разработках.

Несмотря на большое количество затраченного времени, в данный момент проект всё также находится в стадии разработки, последнее видео о новостях проекта вышло в мае 2020 года:

Ещё одним достаточно известным проектом является Goliath Mkll.

Проект стартовал примерно в то же время, что и первый, также в 2022 году и имеет свой канал на YouTube, но так же как и первый проект, — до сих пор находится в стадии разработки:

Достаточно долгое время идея бензиновых грузоподъёмных мультироторных систем пребывала в запустении, в течение всего десятилетия 2022-х. По крайней мере, не было ничего особо заметного, что бы громко заявило о себе в блогосфере или интернете в целом.

Однако, в последние 3-4 года, ситуация похоже сдвинулась с мёртвой точки, — разработчики похоже учли сложность создания системы с изменяемым шагом винтов, и пошли другим путём: один за другим стали появляться проекты, которые сочетают в себе преимущества двух подходов,- электрического и бензинового.

Как правило, эти проекты построены приблизительно по одной и той же схеме: классическая мультироторная система, где несущие роторы базируются на основе электрических двигателей, в то время как источником энергии для питания системы являются не аккумуляторы, а используется портативная бортовая электростанция внутреннего сгорания — для выработки электроэнергии.

Смотрите про коптеры:  Специализированный ремонт радиоуправляемых дронов MJX в Москве от 650 руб. | Все цены в сервисных центрах

Такого типа дроны позиционируются как средства для опыления полей от вредителей. Ввиду своей грузоподъёмности и большого времени работы, они могут брать на борт большой бак с жидкими инсектицидами и работать долгие часы, проходя большую площадь.

Хотя, кое-кто развивает и альтернативные технологии. Как, например, проект ниже, о котором, к сожалению, ничего не известно, кроме технических характеристик, показанных в видео. Мультикоптерная система, предположительно, имеет синхронизирующие валы между парами отдельных двигателей, для выравнивания их скоростей, проходящие внутри труб — каркаса. А управление осуществляется наклоном каждого конкретного двигателя:

В качестве заключения:

Некоторое время назад, вышло видео, где сноубордист, прицепленный к квадрокоптеру, катается на фоне заснеженных ландшафтов:

Неожиданный подход, продемонстрированный в видео, произвёл впечатление на многих и широко разошёлся по блогосфере. Однако любой, более-менее близко знакомый с технической стороной «коптеростроения», понимает, что построение подобного коптера, — обойдётся в круглую сумму!

Но благодаря продемонстрированному строителями сельскохозяйственных коптеров подходу, данная затея уже не кажется такой безумной!

Предположим некий мультикоптер, который может поднимать человека, построенный по электрической схеме, и питающийся от бортовой электростанции. Ввиду мультироторной схемы, такой коптер будет обладать высокой подвижностью, в то же время, обладая высокой грузоподъёмностью, что позволит использовать его для такого интересного применения как дрон-бординг (катание за дроном, на прицепе)! Или скажем, в качестве манёвренного мощного дрона, для доставки грузов.

Для снижения шума от работы двигателя бортовой электростанции, дрон может лететь на большой высоте, поэтому это не будет проблемой.

Стартап? Why not…

ТОП 10 дронов с большим радиусом действия и камерой

Бортовой компьютер и сенсоры

Выбор полетных контроллеров для коптеров очень велик — начиная от простого и дешевого KapteinKUK и нескольких open source проектов под Arduino-совместимые контроллеры до дорогого коммерческого DJI Wookong. Если ты настоящий хакер, то закрытые контроллеры тебя не должны сильно интересовать, в то время как открытые проекты, да еще и основанные на популярной ардуинке, привлекут многих программистов. О возможностях любого полетного контроллера можно судить по используемым в нем датчикам:

• гироскоп позволяет удерживать коптер под определенным углом и стоит во всех контроллерах; • акселерометр помогает определить положение коптера относительно земли и выравнивает его параллельно горизонту (комфортный полет); • барометр дает возможность удерживать аппарат на определенной высоте.

На показания этого датчика очень сильно влияют потоки воздуха от пропеллеров, поэтому стоит прятать его под кусок поролона или губки; • компас и GPS вместе добавляют такие функции, как удержание курса, удержание позиции, возврат на точку старта и выполнение маршрутных заданий (автономный полет).

К установке компаса стоит подойти внимательно, так как на его показания сильно влияют расположенные рядом металлические объекты или силовые провода, из-за чего «мозги» не смогут определить верное направление движения; • сонар или УЗ-дальномер используется для более точного удержания высоты и автономной посадки; • оптический сенсор от мышки используется для удержания позиции на малых высотах; • датчики тока определяют оставшийся заряд аккумулятора и могут активировать функции возврата на точку старта или приземление.

Сейчас существует три основных открытых проекта: MultiWii, ArduCopter и его портированная версия MegaPirateNG. MultiWii самый простой из них, для запуска требует Arduino с процессором 328p, 32u4 или 1280/2560 и хотя бы одним датчиком-гироскопом. ArduCopter — проект, напичканный всевозможным функционалом от простого висения до выполнения сложных маршрутных заданий, но требует особого железа, основанного на двух чипах ATmega.

MegaPirateNG — это клон ArduCopter, который способен запускаться на обычной ардуине с чипом 2560 и минимальным набором датчиков из гироскопа, акселерометра, барометра и компаса. Поддерживает все те же возможности, что и оригинал, но всегда догоняет в развитии.

Продвинутый девяти- канальный пульт
Продвинутый девяти-
канальный пульт

С железом для открытых проектов аналогичная ситуация, как и с рамами для коптера, то есть ты можешь купить готовый контроллер или собрать его самостоятельно с нуля или на основе Arduino. Перед покупкой стоит всегда обращать внимание на используемые в плате датчики, так как развитие технологий не стоит на месте, а старье китайцам как-то надо распродать, к тому же не все сенсоры могут поддерживаться открытыми прошивками.

Наконец, стоит упомянуть еще один компьютер — PX4, отличающийся от клонов Arduino тем, что у него есть UNIX-подобная операционная система реального времени, с шеллом, процессами и всеми делами. Но надо предупредить, что PX4 — платформа новая и довольно сырая. Сразу после сборки не полетит.

Настройка полетных параметров, как и программы настройки, очень индивидуальна для каждого проекта, а теория по ней могла бы занять еще одну статью, поэтому вкратце: почти все прошивки для мультикоптеров основаны на PID-регуляторе, и основной параметр, требующий вмешательства, — пропорциональная составляющая, обозначаемая как P или rateP.

Безопасность

Все новички, думая о безопасности, вспоминают AR.Drone и его защиту винтов. Это хороший вариант, и он работает, но только на мелких и легких аппаратах, а когда вес твоего коптера начинает приближаться к двум килограммам или давно перевалил за эту цифру, то спасти может только прочная железная конструкция, которая будет весить очень много и, как ты понимаешь, сильно уменьшит грузоподъемность и автономность полета. Поэтому лучше сперва тренироваться подальше от людей и имущества, которое можно повредить, а уже по мере улучшения навыков защита станет и не нужна. Но даже если ты пилот со стажем, то не забывай о технике безопасности и продумывай возможные негативные последствия твоего полета при нештатных ситуациях, особенно при полетах в людных местах. Не стоит забывать, что сбой контроллера или канала связи может привести к тому, что аппарат улетит от тебя далеко, и тогда для поиска может пригодиться GPS-трекер, установленный заранее на коптер, или же простая, но очень громкая пищалка, по звуку которой ты сможешь определить его местоположение. Настрой и заранее проверь функцию fail safe твоего полетного контроллера, которая поможет приземлиться или вернуть коптер на точку старта при потере сигнала с пульта.

Расчёт коптера-ликбез — wiki о коптерах

методика расчёта предложена Книжниковым ВВ

полётная масса

Эмпирика прикидки максимальной массы мультироторных коптеров от габаритов платформы или длины диагонали между моторами при условии максимально вписанных винтов—– масса в кг равна десять умножить на диагональ в метрах в квадрате—–м=10d2—-
например при диагонали 32 см или 0.32 метра получаем 10 х (0.32)х0.32=10х0.1=1 кг типично для 8 дюймовых вмг. При диагонали в 1 метр получим 10 кг приемлимой максимальной полетной массы!
можно решить и обратную задачу——заказчик просит спроектировать мультиротарную платформу на 10 кг полезной нагрузки——значит масса полётная будет 4х10 кг =40кг , тогда сразу прикидываем что размер диагонали равен корень квадратный из 40/10 или корень из 4 и получаем 2 метров!

Академический метод расчета мощности электро вмг по тяге в режиме висения в полгаза —-

1) желаемая тяга в ньютонах делить на ометаемую площадь винта в метрах квадратных—нагрузка в паскалях!
например хочу получить 500 г силы = 5 н тяги на стопе с винта диаметром 10 дюйм или 5 дм2 =0.05 м2—–получаем нагрузку 5н/ 0.05м2=100 н/м2!

2) корень квадратный из соотношения нагрузки к плотности среды—это скорость потока метры в секунду в плоскости винта!
корень квадратный из соотношения 100 н/м2 /1.23 кг/м3=( 81)0.5=9 м/с!!!

3) потребляемая электро мощность на среднем газу в ваттах с учётом кпд вмг —-это произведение тяги на скорость делённое на кпд электро-вмг!
потребляемая моща равна 5 н х 9 м/с / 0.66=67.5 ватт—–это эквивалентно мотору массой 65-70 грамм в полгаза!

4) для режима статики удобно применять эмпирическое выражение зависимости геометрии двухлопастного винта и размеров статора многополюсного бк электромотора как произведение диаметра на шаг пропеллера в см эквивалентна произведению диаметра на длину статора в мм D(см)хH(см)=d(мм)хl(мм)—- например 25,2см х12,6см=318=22мм х14.4мм

эффективность по тяге при висении

эмпирическая зависимость для модельных размеров пропеллеров мультироторов в полгаза, диаметр винта в дюймах приблизительно равен оптимальной удельной тяге электро-вмг например

3дюйм=3 грамм на ватт----4д=4г/вт----5д=5г/ вт----6д=6 г/вт  и так далее вплоть до 15дюйм!

Обычно наибольшую эффективность по удельной тяге показывают двухлопастные пропеллеры—-но при ограничении габарита по диаметру из-за конструктива используют трёх и четырех лопастные для повышения тяговооруженности при том же моторе и акку!
Также многолопастные винты лучше работают в турболизированом потоке от ветра в приземленном слое—по причине
меньшей паразитной пульсации давления при проходе лопастями секторов ометания в косом потоке и пересечении луча!
Как результат —–меньше трясёт весь аппарат, корректней работает АП и видеокартинка не дерганая!

косой поток
Коптер при движении в горизонте относительно воздуха летит благодаря наклону оси винта от вертикали в направлении полёта —этот режим вызывает косой обдув на плоскость вращения винта——явление очень сложное с точки зрения мгновенного аэродинамического обтекания каждого фрагмента лопасти в зависимости от сектора расположения лопасти!
В классическом одновинтовом вертолёте для адаптации к косому обдуву придумали автомат перекоса угла установки лопастей в зависимости от сектора—-при этом лопасть начинает работать как крыло и частично разгружает мотор по потребляемой мощности в полтора раза правда только в узком диапазоне горизонтальной скорости —-называется крейсер ! В мультироторах винту с фиксированным шагом удаётся адаптироваться благодаря упругому динамическому кручению лопасти из эластичного материала типа термопластика плюс-минус пару градусов—-разгрузка мотора на крейсере около 1.1-1.2 раза относительно режима висения!

минимальная скорость крейсера тождественна скорости потока через винт в режиме висения для квадрокоптера

Vвис=Vкр=(1.1mg )0.5/2D, диапозон крейсерских скоростей коптера любого типа Vкр=(1-1.4)Vвис!!!
Например  квадрик полётной массой 800грамм с винтами диаметром 10  дюйм или 0.25 м-----то 
корень квадратный из 1.1веса в 8.8 ньютон делить на 2х0.25 м ----получаем 2.96/0.5=6 метров в секунду!
Тогда поглащённая мощность висения или потока в штиль равна вес 8 н х 6 мвс=48 вт-----потребляемая моща 48 вт делить на кпд вмг 66% или 0.66 равна 72 вт !        
В горизонтальном полёте на крейсере около  6 м/с мощность упадет до 0.9 мощности висения или 65 вт, так как  

винт в косом потоке начинает работать как крыло в набегающем потоке! А вот при максимальной скорости полёта в два раза выше, чем скорость потока при весении потребляемая мощность вмг вырастет также в 2 раза!

Угол наклона коптера при висении в ветер, то есть неподвижно земле, как раз указывает истинную скорость  ветра! 

Тогда скорость можно принять как половину от угла наклона или например 0.5 х10 град=5 метров в секунду для большинства мультиротарных коптеров! На практике если наклон при висении более 20 град например на высоте 100 метров и выше, то ветер уже критичный для невозврата против ветра——выход жаться к земле, где ветер слабее 1.5 раза и огородами ползти домой!

Максимальная воздушная горизонтальная скорость коптера эмпирически это произведение шага на частоту—– Vпол=Hf !

Парадокс работы винта в косом потоке для мультироторных платформ заключается в следующем —–максимальная воздушная скорость ла определяется скоростью потока, как произведение геометрического шага винта на частоту вращения и равна именно скорости потока в плоскости винта несмотря на то что ось или вектор тяги не параллелен движению самого коптера по сравнению с самолетом,а развернут под большим углом к горизонтали и почти вертикальный 60-80градусов—-получается что
струя воздуха относительно коптера выворачивается из прямой классической воронки при висении в змееобразную загогулину похожую на раструб саксафона засасывающего набегающий поток с трансформацией скоростей в горизонтальную составляющую!

“10 заповедей” авиаконструктора квадрокоптера(дрон)

1) масса полётная это четыре массы полезного груза mпол=4mгруз, где mрамы авионика =mвмг=mакку=mгруз

2) диагональ между моторами в сантиметрах это корень квадратный из полётной массы дрона в граммах L=(m)0.5

3) удельная тяга винта (грамм/ватт) в режиме висения на полгаза равна диаметру пропеллера в дюймах D(дюйм)=m/Рпот

4) скорость крейсера в горизонтальном полёте равна скорости потока через винт при весении Vкр=Vвис(м/с)=5(m(г))0.5/D(см)

5) мощность потребления вмг при весении равна произведению массы на скорость потока и делить на эффективность вмг с бк моторами Pст=UаккуIст=0.01m(г)Vвис/КПДвмг———где КПДвмг =40% у крошечных квадриков диагональю до 12см,КПДвмг =50% у мелких квадриков диагональю до 25см, КПД=60% у средних коптеров с диагональю до 50см, КПД=70% у больших до 100см, КПД=80% у крупных квадрокоптеров с диагональю свыше 2м

6) напряжение аккумулятора эмпирически корень квадратный из одной десятой полётной массы в граммах Uакку(в)=(0.1m)0.5

7) перегрузка на ла или относительный запас тяги это максимальная тяговооруженность —- Fст(г)/m(г)=Kт=2-4единицы

8) относительный запас скорости полёта это корень степени 0.66 из тяговооруженности Kск=(Тст)2/3——тогда Vмах=VвисKск

9) коэф.полезного действия электро-вмг в горизонтальном полёте на полном газу 50% —–Pпотреб=0.02m(г)Vмах=UаккуIпол

10) произведение диаметра и шага двухлопастного винта в см равно произведению диаметра и длины статора бк в мм DH(см2)=dl(мм2)

более подробно смотри статью “долголёт”

Косойпоток.jpgВода4.jpgТОП 10 дронов с большим радиусом действия и камерой

Сравнительная таблица лучших квадрокоптеров

Название

Основные характеристики

Цена

Ryze Tech Tello

Ryze Tech Tello min: фото

Разрешение 720р, мощности аккумулятора хватает минут на 10 полета, управляется по WiFi, прямо со смартфона.

₽ 9 290

button rus

DJI Spark

DJI Spark min: фото

Управляется не только радиоканалом, но и WiFi, в воздухе он может находиться лишь минут 12, с разрешением (1080p), есть поддержка управления жестами.

₽ 29 790

button rus

Hubsan X4 FPV Brushless H501S

Hubsan X4 FPV Brushless H501S min: фото

Отсутствует стабилизатор видеосъемки, разрешение камеры – лучшее для любительских моделей (1080p), 20 минут полета дрон держится в воздухе уверенно.

₽ 14 900

button rus

Syma X15

Syma X15 min: фото

Радиус радиоуправления (70 м), время полета (7 минут), управление осуществляется с пульта ДУ по радиоканалу, камеры у аппарата нет.

₽ 1 949

button rus

MJX Bugs 3

MJX Bugs 3 min: фото

Заявленные 19 минут в воздухе не держится, максимум – минут 12, отсутствие камеры в комплекте.

₽ 6 288

button rus

Syma X5UW

Syma X5UW min: фото

Недолгое время полета (около 7 минут) при довольно длительной зарядке аккумулятора (около 2 часов), камера 720p.

₽ 3 100

button rus

MJX Bugs 8

MJX Bugs 8 min: фото

Без видеокамеры разгоняется до 12,5 м/с, и держится в воздухе больше 10 минут, радиоканал позволяет ему подниматься до 300 метров.

₽ 7 514

button rus

Xiro XPLORER mini

Xiro XPLORER mini min: фото

Управляется по WiFi через фирменное приложение для Android и iOS на расстоянии до 100 м, встроенная камера пишет видео в разрешении 1920х1080 точек, а фото делает аж с разрешением 3120х4208 пикселей.

₽ 9 900

button rus

DJI Mavic 2 Pro

DJI Mavic 2 Pro min: фото

Оснащен отличной видеокамерой с матрицей на 20 мегапикселей и отличается хорошим временем полета — около 30 минут, камера поддерживает HDR, делает фотографии в разрешении 3648х5472 точки.

₽ 123 790

button rus

DJI Mavic Air Fly More Combo

DJI Mavic Air Fly More Combo min: фото

Камера с разрешение 2160p и частотой 120 кад/сек, скорость 19 м/с, время полета около 20 мин, смонтированы ультразвуковой датчик, барометр.

₽ 79 690

button rus

DJI Mavic Air

DJI Mavic Air min: фото

Максимальная скорость до 19 м/с, высота полёта — до полукилометра, максимальное время в воздухе — 21 минута, скорость ввзлёта и посадки 3 и 4 м/с соответственно, 8 гигабайт встроенной памяти.

₽ 62 690

button rus

Теория полета

В теории полета (аэродинамике) принято выделять три угла (или три оси вращения), которые задают ориентацию и направление вектора движения летательного аппарата. Проще говоря, летательный аппарат куда-то «смотрит» и куда-то двигается. Причем двигаться он может не туда, куда «смотрит».

Три эти угла принято называть крен, тангаж и рыскание. Крен — это поворот аппарата вокруг его продольной оси (оси, которая проходит от носа до хвоста). Тангаж — это поворот вокруг его поперечной оси (клюет носом, задирает хвост). Рыскание — поворот вокруг вертикальной оси, больше всего похожий на поворот в «наземном» понимании.

schema
Основные маневры (слева направо): движение по прямой, крен/тангаж и рыскание

В классической схеме вертолета основной винт при помощи автомата перекоса лопастей управляет креном и тангажем. Так как основной винт обладает ненулевым сопротивлением воздуха, у вертолета возникает вращающий момент, направленный в сторону, противоположную вращению винта, и, чтобы его скомпенсировать, у вертолета есть хвостовой винт.

Изменяя производительность хвостового винта (оборотами или шагом), классический вертолет управляет своим рысканием. В нашем же случае все сложнее. У нас есть четыре винта, два из них вращаются по часовой стрелке, два — против часовой. В большинстве конфигураций используются винты с неизменяемым шагом и управлять можно только их оборотами.

Если мы увеличим обороты одного винта, вращающегося по часовой стрелке, и уменьшим обороты другого винта, вращающегося по часовой стрелке, то мы сохраним общий момент вращения и рыскание по-прежнему будет нулевым, но крен или тангаж (в зависимости от того, где мы сделаем ему «нос») изменятся.

А если мы увеличим обороты на обоих винтах, вращающихся по часовой стрелке, а на винтах, вращающихся против часовой стрелки, уменьшим (чтобы сохранить общую подъемную силу), то возникнет вращающий момент, который изменит угол рыскания. Понятное дело, что все это будем делать не мы сами, а бортовой компьютер, который будет принимать сигнал с ручек управления, добавлять поправки с акселерометра и гироскопа и крутить винтами, как ему надо.

Для того чтобы спроектировать коптер, необходимо найти баланс между весом, временем полета, мощностью двигателей и другими характеристиками. Все это зависит от конкретных задач. Все хотят, чтобы коптер летал выше, быстрее и дольше, но в среднем время полета составляет от 10 до 20 минут в зависимости от емкости аккумулятора и общего полетного веса.

Стоит запомнить, что все характеристики связаны между собой и, к примеру, увеличение емкости аккумулятора приведет к увеличению веса и, как следствие, к уменьшению времени полета. Чтобы узнать, сколько примерно твоя конструкция будет висеть в воздухе и сможет ли вообще оторваться от земли, существует хороший онлайн-калькулятор ecalc.ch.

Но прежде чем вбивать в него данные, нужно сформулировать требования к будущему аппарату. Будешь ли ты устанавливать на аппарат камеру или другую технику? Насколько быстрым должен быть аппарат? Как далеко тебе нужно летать? Давай посмотрим на характеристики различных компонентов.

PX4 — бортовой ком- пьютер с полноценной UNIX-системой
PX4 — бортовой компьютер с полноценной UNIX-системой
Оцените статью
Радиокоптер.ру
Добавить комментарий

Adblock
detector